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Abstract—Most major events are often accompanied by mis-
information on online Social Networking platforms. Due to its
nature, the COVID-19 pandemic was bound to lead to an
explosion of information online, much of it false or misleading.
This information explosion, termed ‘“infodemic” by the World
Health Organization (WHO), has revealed the need for automatic
fake news detection to help with the exponentially growing flow
of unverified information. The objective of this study is to explore
combinations of different supervised classification models trained
on different general and domain-specific embeddings, and com-
pare the effects of the iterations on the results. We also analyze
the results to determine whether the differences in weighted F1-
score performance metrics are statistically significant. Ultimately,
we demonstrate that concatenation of general and context-specific
embeddings improves performance. Our research shows promise
for health misinformation detection and formulation of effective
public health responses.

Index Terms—COVID-19, Misinformation, Social Media, Su-
pervised Learning, Transfer Learning, Word Embeddings

I. INTRODUCTION

The COVID-19 pandemic has played out as an infodemic,
with misinformation, disinformation and rumours rapidly
spreading on various facets of the disease such as origin,
causes, symptoms, prevention, and treatments [1]. This has
significantly hampered the global public health response.
Social media is a popular way of communication, but un-
certainties during the pandemic have caused proliferation of
harmful health misinformation posts via platforms such as
Reddit, Twitter, and Facebook, among others [2]. There are
a number of topics fueling COVID-related misinformation,
ranging from conspiracy theories, misreporting of morbidity
and mortality, disease spread mechanisms, prevention meth-
ods, treatments and drugs, recovery experiences, and political
controversies [3], [4].

Although misinformation spreads both online and offline,
the propagation and contagion of misinformation are more
pronounced in social media platforms [5], [6]. Therefore, a
critical understanding of the methods to detect misinformation
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in various social media platforms is a precursor to the design
and implementation of effective health promotion policies [7].
One of the earlier attempts to detect health misinformation
used Twitter data; Castillo et al. extracted multiple features
from trending topic posts to classify the messages based on
credibility [8]. Since then, there have been several interdisci-
plinary studies using social media (mostly using Twitter data)
to understand the spread of misinformation [9]-[14], ranging
from experiments on attitudes towards fake news [15], to
public health policy frameworks [16], and conceptual theories
in information and knowledge management [7]. In the field of
Natural Language Processing (NLP), researchers have worked
on building datasets related to misinformation, including rep-
resenting with GloVe embeddings to find relevance between
posts and misinformation [17]. Others have collected fact-
checked articles covering a broad range of topics, including
political and medical discussions [18], [19].

The objective of this study is to explore different supervised
classification models, namely Support Vector Machine (SVM)
and Multi-Layer Perceptron (MLP), trained on different em-
beddings. Various combinations of embeddings were used to
determine whether these produced significant improvements
in comparison to their constituent parts. Our research has
practical implications during a pandemic when fact-checking
activities are usually manual, and therefore, time-consuming,
labour intensive and expensive. Insights from our study can
help with development of automated systems which reduce
the workload of manual fact-checking to clarify and debunk
different types of misinformation.

II. RELATED WORKS

Our study uses NLP to analyze health misinformation spe-
cific to COVID-19. The challenges of more generic fake news
detection from an NLP perspective can be categorized into four
areas: fact-checking, rumor detection, stance detection, and
sentiment analysis [20]. To facilitate the formulation of fake



news as a supervised classification or regression task, various
types of datasets have been used in literature, ranging from la-
belled short claims, e.g. PolitiFact and Snopes, to entire-article
datasets where the whole article is either true or false. Labelled
datasets for fake news detection in social networking services
are limited. Various methods for general-purpose fake news
detection have been utilized in literature, including machine
learning models with and without neural networks, rhetorical
approaches with Rhetorical Structure Theory (RST) to define
the semantic role of text units and the overall coherence of
a story, as well as Recognizing Textual Entailment (RTE) to
recognize relationships between sentences. In relation to our
research methodology, we use supervised machine learning for
the COVID-19 misinformation detection task.

On the area of health misinformation, there is considerable
work in literature, mainly covering vaccinations and infectious
diseases. The findings from the related papers show notable
prevalence of misinformation within social media posts [5].
Diving further into the specific topic of COVID-19 misinfor-
mation, one of the challenges has been inaccurate news coming
from reputable sources on developing stories, such as efficacy
of anti-inflammatory drugs [21]. At the same time, medical
professionals have utilized social media more than ever before
for sharing professional opinions and democratizing access to
scientific data [21]-[23].

On the subject of COVID-19 misinformation, recent stud-
ies have also attempted to tackle this research challenge.
Meng et al. fuse general embedding-based RoBERTa and
COVID domain-specific embedding COVID-Twitter-BERT
(CT-BERT) [24] using a simple MLP. The authors carried out
the experiments on the aforementioned dataset to demonstrate
that the combination of general and context specific embed-
dings marginally improves the performance of a classification
model. However, they did not demonstrate that these improve-
ments were statistically significant. Wani et al. [25] compare
the performance of models based on general GloVe embed-
dings and domain specific fastText embeddings, which were
trained on an non-annotated dataset of 179k COVID-related
tweets posted by Gabriel Preda on Kaggle [26]. The general
and domain specific word embeddings were not combined in
any way by the authors. However, the context-specific fastText
embedding did produce better results than the general GloVe
embeddings. Here again no testing was done to determine
whether those gains were statistically significant. In our study,
we used the same COVID-related Kaggle dataset from [26]
for training our own context-specific word embeddings.

From the sociological perspective, studies have shown that
social media users share posts with misinformation mainly due
to inattention to detail rather than any malicious intent [27].
Essentially, what people share on social media is not always
what they believe. In the light of this, misinformation de-
tection research can highlight trends that need public health
interventions and repeated messaging [27]. Another factor to
take into account is the sense of desperation that could be
making people susceptible to misinformation. Research has
shown that parents of ailing children are more likely to fall

for online misinformation owing to desperation in finding
treatments for chronic diseases like cancer [28]. In light of
these factors, proper interventions on trending misinformation
posts can help users to think more carefully about the accuracy
of information they consume. Our work shines light on ways of
improving misinformation detection on social media, thereby
aiding effective public health responses.

Additionally, once misinformation is identified, health pro-
fessionals can also be enabled to engage with patients in
social media to counter trending misinformation topics. As
an example, pediatric infectious disease specialists have been
proposed as a solution to social media misinformation about
COVID-19 related to children and parents [29]. Ultimately,
users consuming or spreading misinformation are usually not
malicious, and once misinformation is detected, pro-science
voices are imperative in social media [30].

III. METHODOLOGY

In this section, we discuss the dataset used, configurations
for word embeddings, transfer learning approaches utilized,
and the experiments conducted to compare performance and
find out if the different embeddings significantly improve the
weighted F1 score.

A. Dataset and Preprocessing

The dataset used in our experiments was released at the
CONSTRAINT 2021 workshop colocated with the 35th AAAI
Conference on Artificial Intelligence [31]. Henceforth, we
shall refer to this dataset as the CONSTRAINT 2021 dataset.
This dataset contains 6420 and 2140 social media posts in
the train and test sets respectively. The prevalent words and
phrases from this dataset are summarized in the word cloud
shown in Figure 1. These posts have been labelled as “real”
and “fake”. The “real” posts were collected from official and
verified Twitter handles, including government accounts, med-
ical institutes, etc. [32]. The “fake” posts were collected from
fact-checking websites such as Politifact, NewsChecker, and
Boomlive. Fact-checked “fake” posts were collected regardless
of the social media platforms that they were posted on, which
is why the “fake” posts are sourced from a variety of social
media platforms such as Twitter, Facebook, Instagram, among
others, in contrast to the “real” social media posts which are
entirely from Twitter.

The combined CONSTRAINT 2021 dataset contains a total
of 8560 posts, of which 4080 (47.7%) are “fake” posts,
and 4480 (52.3%) are “real” posts. This combined dataset
can be considered balanced. All punctuation and standard
stopwords were removed from the tweets. Thereafter, the tweet
level representation was calculated and concatenations done as
explained in the proceeding sections.

B. Twitter Embeddings

Word embeddings are vector representations of words where
words with similar meaning share similar vector spaces. There
are different ways of creating vector these representation.
In our case we use Word2vec embeddings [33] for all our
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Fig. 1: Word Cloud Representation of the CON-

STRAINT_2021 Dataset

experiments. We used two word embeddings, namely General
Twitter Embedding (GTE) and the Context-Specific Embed-
ding (CSE), which we used to further derive all the other
Twitter embeddings for our experiments.

1) General Twitter Embedding (GTE): For the gen-
eral/universal embedding, we use a General Twitter Embed-
ding (GTE) introduced in [34]. This embedding was trained
on a corpus of 400 million tweets, and has a vocabulary size
of 3 million words.

2) Context-Specific Embedding (CSE): To create embed-
dings specific to the COVID-19 context, we chose a corpus
[26] posted on Kaggle containing 179,108 tweets spanning
between 29th February, 2020 and 24th July, 2020. We used
these tweets to create a Word2vec embedding of vector size
200 by using the Gensim library [35]. This embedding has a
vocabulary size of 22,012 words, which is substantially lesser
than the vocabulary of size of the GTE.

3) Tweet Level Vector Representations: This representation
is created by taking the average across the word vector
representations of all the words left in the tweet after pre-
processing, provided said words are also in the vocabulary
of the Word Embedding. This results in a single vector
representation for each tweet, whose dimension will be equal
to those of the individual words in the word embedding from
which they were created. Therefore, SVM and MLP were have
been used in our experiments, and not LSTMs, GRUs, and
their transformer variants, which require sequential inputs.

C. Transfer Learning

We learn word embeddings on a small corpus [26] and
then transfer the knowledge to the larger embedding space
learned represented by a general corpus, thereby improving
the representational power of the general embedding for a
specific task. The task is creating representations of words in
the context of the COVID-19 pandemic. Such an embeddding
can take advantage of the large vocabulary size of a general
embedding and the representational accuracy of the context
specific word embedding. We carry out this transfer learning

via two distinct ways. Firstly, using the method of transfer
learning explained in [36], which we will be referring to
as Augmentation Transfer Learning (ATL). Secondly, using
concatenation of general and context specific embeddings to
create new embeddings. This process of transfer learning will
be called Concatenation Transfer Learning (CTL).

1) Augmentation Transfer Learning (ATL): We find out the
common words between the vocabularies of GTE and CSE.
The word embeddings of these common words are then used to
train a simple neural network with ReLU activation function,
which takes GTE word embeddings as input and the CSE
word embeddings as the target output. This neural network,
trained on common vocabulary word embeddings, can now
be used to find the context-specific word embeddings of all
the corresponding word embeddings in the GTE vocabulary,
thereby creating a third representation called Augmented Twit-
ter Embedding (ATE), which has the same vocabulary as GTE,
but a vector size of CSE. This process by which the ATE is
created is termed the Augmentation Transfer Leaning (ATL).
The resulting ATL embedding does not have any duplicate
words in its vocabulary.

2) Concatenation Transfer Learning (CTL): We use the
General Twitter Embedding (GTE), Context Specific Embed-
ding (CSE), and Augmented Twitter Embedding (ATE) to
create concatenated embeddings. To create the concatenated
tweet level vector representations, the tweet level vector rep-
resentations explained in sub-section III-B3, are concatenated
with each other. Two tweet level embeddings are created via
this process of concatenation, one by concatenating GTE and
ATE, called GTE+ATE, and the other by concatenating GTE
and CSE, called GTE+CSE.

Overall, we use 5 different types of word embeddings
to derive tweet level embeddings: (1) GTE, an off-the-shelf
general word embedding for tweets, (2) CSE, a context specific
word embedding for COVID-19 related tweets, (3) ATE, a
context specific word embedding, but with a larger vocabulary
than CSE, (4) GTE+CSE, a concatenation of the tweet level
embeddings derived from GTE and CSE word embeddings,
and (5) GTE+ATE, a concatenation of the tweet level embed-
dings derived from GTE and ATE word embeddings.

D. Experiments

Our objective with these experiments were two-fold: firstly,
to determine if there was an improvement in the performance
(determined by the weighted F1 score) of classification models
when trained using embeddings created through Augmented
Transfer Learning (namely ATE) and/or Concatenated Trans-
fer Learning (namely GTE+CSE & GTE+ATE) vis-a-vis the
embeddings from which the aforementioned embeddings were
derived (namely GTE, CSE, and ATE). And secondly, to
determine if the improvements thus produced were statistically
significant.

In order to meet both these requirements, we combined
the train and test sets of the CONSTRAINT 2021 dataset,
and carried out 5x2 Cross Validation (CV) tests. The 5x2 CV



involves carrying out 2-fold cross validation on the combined
dataset across 5 iterations, with the dataset getting shuffled
at every iteration. In each of the 5 iterations all the models
are trained on one half of the dataset, and tested on the other
half. In the same iteration, the training and testing halves are
then swapped, and the models are trained on the erstwhile
testing half and tested on the erstwhile training half. This
procedure produces a total of 10 test results for each model.
These 10 test results can then be used to test for whether a
pair of models are statistically significantly different or not.
This significance testing method, called the Combined 5x2
CV f-test, is done via the series of formulae specified in [37]:
Let there be two models, namely A & B which need to be
compared for statistical significance.

(1) _ (1) (1) (1)

p Ppr” —Pp

In Equation 1, pi‘l) is the vector of 5 weighted F1 scores
which model A produced over the test set in the first split of
the 2-CV, in each of the five iterations. Similarly for pg .pW
is the element-wise subtraction between pfj) & pg).

@ =) @)

p

In Equation 2, p(® is similar to p(1), except the weighted

F1 scores involved in this calculation were calculated in the
second split of the 2-CV, in each of the 5 iterations.

(1) (2)
__ p+Dp
p=tF (3)
In Equation 3, p is the element-wise mean of the element-
wise differences p!) & p3).

§2 — (p(l) _ﬁ)2 + (p(2) _]5)2 4)

In Equation 4, s2 is the element-wise variance of the

element-wise differences, p") & p(®). Finally, the f-statistic
is calculated as follows:

N 2
f= Z?:l 23:1 (pf) 5)
2 Z?:1 57

The f-statistic is distributed with 10 and 5 degrees of free-
dom, for the numerator and denominator respectively. Those
degrees of freedom along with the value of the f-statistic
are used to determine the p-value for a pair of models. The
two models in consideration are determined to be significantly
different if the corresponding p-value < 0.05, i.e., we reject
the null hypothesis that the two models are similar. This
significance testing is carried out for every possible pairing
of the models, and the conclusions are drawn accordingly.

Model 1 Model 2 f-statistic p-value Significant?
GTE ATE 81.785 0.000066 Yes
CSE ATE 890.184 < .00001 Yes
GTE GTE+ATE 1.345 0.391441 No
ATE GTE+ATE 64.005 0.000121 Yes
GTE CSE 3.105 0.111458 No
GTE GTE+CSE 16.561 0.00317 Yes
CSE GTE+CSE 3.953 0.071234 No

GTE+ATE | GTE+CSE 18.385 0.00248 Yes

(a) SVM Results

Model 1 Model 2 f-statistic p-value Significant?
GTE ATE 114.177 0.000029 Yes
CSE ATE 61.369 0.000135 Yes
GTE GTE+ATE 1.099 0.488222 No
ATE GTE+ATE 11.006 0.008146 Yes
GTE CSE 2.055 0.220775 No
GTE GTE+CSE 7.826 0.017418 Yes
CSE GTE+CSE 8.107 0.016123 Yes

GTE+CSE | GTE+ATE 2.593 0.152293 No

(b) MLP Results

TABLE I: Results of 5x2-Fold CV for 2-Tailed Significance
Testing with SVM and MLP Variants

E. Model Parameters

We used two classification models for our experiments, an
SVM model, and an MLP model. SVM was a more traditional
model, and the MLP was a stand in for Deep Learning models.
The parameters for the SVM model are {kernel:rbf,
C:10, gamma:scale, random_state:S}. C = 10
was configured based on hyperparameter tuning. The SVM is
implemented using the Scikit-learn library. The MLP contains
two hidden layers of sizes 512 & 128 for the first and second
layers respectively. The rest of the parameters have the default
values. The MLP was implemented using the Keras library,
and the random state was set to 8 for reproducibility.

We keep the parameters constant, regardless of the em-
bedding being experimented on, because our objective is to
determine whether changing the embedding alone can produce
a significant change in the performance measure. If true, that
change in the performance measure can be directly attributed
to the change in embedding. Significance testing further con-
firms whether the change was statistically significant or just a
fluke of random sampling.

Each of the models will be subsequently referred to by the
name of the embedding used to train the model. For instance
the SVM model trained on GTE will be simply referred to as
GTE, and so on for other embeddings.

IV. RESULTS AND DISCUSSION

Figure 2 shows radar charts with the average of the 10
test results we got from the 5x2 CV experiment for different
embeddings, for SVM and MLP models respectively. Tables
Ib & Ia provide the relevant significance testing results to
determine whether the differences in weighted F1-score per-
formance metrics in Figure 2 are statistically significant.

Following is the analysis of the models trained on embed-
dings created through TL, as detailed in Section III-C. We
discuss the most relevant and interesting results to appraise
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the overarching goal of our research towards COVID-19
misinformation detection.

A. ATE

Figure 2 shows that ATE based models perform worse
that every other model for MLP & SVM, including models
based on embeddings used to create ATE, namely GTE and
CSE. Furthermore, Tables Ia & Ib shows that the performance
difference is significant.

B. GTE+ATE

For SVM, Figure 2 shows that GTE+ATE performs as well
as GTE, but it performs far better than ATE. Furthermore,
Table Ia shows that the improvement over ATE is significant,
but there is no significant difference between performances of
GTE and GTE+ATE. It can be surmised that the improvement
in the performance of GTE+ATE over ATE could be largely
attributed to GTE.

For MLP, GTE+ATE also performs far better than ATE, and
as well as GTE. GTE+ATE’s weighted Fl-score is only 1%
lesser than GTE’s. While Table Ib shows that GTE+ATE’s
performance is significantly better than ATE’s, there is no
significant difference between GTE’s and GTE+ATE’s perfor-
mances. We postulate that MLP was not able to take advantage
of the concatenation of GTE and ATE. Again, improvement
in GTE+ATE’s performance can be attributed to GTE.

C. GTE+CSE

It can be clearly seen from Figure 2 that models based on
GTE+CSE provide the best performance for both SVM and
MLP across all the performance metrics.

However, for SVM, Table Ia shows that while GTE+CSE
performs significantly better than GTE, it does not show
significant improvement over CSE. It can be surmised that for
SVM, GTE+CSE’s performance improvement is due to CSE.
But, GTE+CSE has a vocabulary of size 3M, far larger than
CSE’s 22k, thereby lending GTE+CSE more generalizability
because it can represent more words. Hence, GTE+CSE stands

a better chance at outperforming CSE on datasets whose
vocabulary may be very different from CSE.

For MLP, Table Ib clearly shows that GTE+CSE’s perfor-
mance is significantly better than that of both GTE and CSE
individually. While Figure 2 shows that on average GTE+CSE
is better than GTE+ATE, but Tables Ib and Ia show that
GTE+CSE performs significantly better than GTE+ATE for
MLP, but the same performance is not observed for SVM.

Ultimately, concatenation of general and context-specific
embeddings significantly improves performance as shown by
our analysis of the FI score and the statistical significance
tests. Such tests have not been carried out by comparable
studies referenced in the Related Works section. This appraisal
shows promise for the use of Concatenation Transfer Learning
(CTL) for future research on health misinformation detection.

V. CONCLUSION

This study tackled the issue of health misinformation de-
tection, and explored combinations of different supervised
classification models trained on different general and domain-
specific embeddings. We compared the effects of the iterations
on the results and also analyze the results to determine whether
the differences in weighted F1-score performance metrics were
statistically significant. Ultimately, the concatenation approach
of general and context-specific embeddings showed statisti-
cally significant improvement in performance. For future work,
we plan to explore further the generalizability of Concatena-
tion Transfer Learning with other datasets. Experiments using
BERT and RoBERTA could be conducted in future works to
further evaluate the findings in this short paper, given that
transformers have achieved good results for NLP tasks.
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