
Contrasting Sequence Groups by Emerging
Sequences

Kang Deng and Osmar R. Zäıane

Department of Computing Science, University of Alberta
Edmonton, Alberta, T6G 2E8

{kdeng2,zaiane}@cs.ualberta.ca

Abstract. Group comparison per se is a fundamental task in many sci-
entific endeavours but is also the basis of any classifier. Contrast sets and
emerging patterns contrast between groups of categorical data. Compar-
ing groups of sequence data is a relevant task in many applications. We
define Emerging Sequences (ESs) as subsequences that are frequent in se-
quences of one group and less frequent in the sequences of another, and
thus distinguishing or contrasting sequences of different classes. There
are two challenges to distinguish sequence classes: the extraction of ESs
is not trivially efficient and only exact matches of sequences are consid-
ered. In our work we address those problems by a suffix tree-based frame-
work and a sliding window matching mechanism for the distance metric
between sequences. We propose a classifier for sequence data based on
Emerging Sequences. Evaluating against two learning algorithms based
on frequent subsequences and exact matching subsequences, the exper-
iments on two datasets show that our similar ESs-based classification
model outperforms the baseline approaches by up to 20% in prediction
accuracy.

Key words: Emerging Sequences, Classification, Sequence Similarity

1 Introduction

Any science inevitably calls for comparison. Group comparison has always been
a scientific endeavour in Statistics [20] and since the early days of Data Mining
such as discriminant rule discovery [12]. It also is the basis of any classifier in
Machine Learning. Contrast sets [3] and emerging patterns [7] contrast between
groups of categorical data. Comparing groups of sequence data is a relevant task
in many applications, such as comparing amino acid sequences of two protein
families, distinguishing harmful operations from normal ones in software man-
agement, comparing good customers from churning ones in e-business, or con-
trasting successful and unsuccessful users (or learners) of software or e-learning
environments, are typical examples where contrasting sequence groups is crucial.

To contrast groups of sequences, one fundamental question is:“How do several
sequence classes differ?” In categorical data, discriminative patterns, typically a
conjunction of attribute value pairs, are extracted to represent multi-dimensional



2 Contrasting Sequence Groups by Emerging Sequences

data; a similar strategy, i.e. the extraction of discriminative patterns, can be
adopted in sequence data. However, since the order of items is important in
sequences, different from categorical data, the discriminative patterns we are
interested in should also considers the order of items in the sequence data. We
opt to use subsequences as discriminative patterns to contrast sequence groups.
Discriminative subsequences are helpful in classification as well. Borrowing an ex-
ample from Ji, Bailey and Dong, for instance, the subsequences “having horns”,
“faces worship”, “stones price” and “ornaments price” appear several times in
the Book of Revelation, but never in the Book of Genesis [14]. Biblical schol-
ars might be interested in those subsequences and regard them as fingerprints
associated with the Book of Revelation.

However, there are two main challenges to contrast sequence groups using
subsequences. First, the mining of discriminative subsequences is hard. Wang
et al. proved that the complexity of finding emerging patterns is MAX SNP-
hard [27]. As a more complex pattern, the mining of subsequences cannot be
done in polynomial time. Another problem is during the classification stage:
as subsequences become long, an approximative match is desired instead of an
exact match when subsequences are compared against discriminative patterns.

In this paper, we first define Emerging Sequences (ESs) as subsequences that
are frequent in sequences of one group and less frequent in the sequences of an-
other, and thus distinguishing or contrasting sequences of different classes. Then,
a similar ES-based classification framework is proposed. In this framework, ESs
are mined more efficiently by a suffix tree-based approach; and a sliding window
matching mechanism is also implemented to consider similar subsequences. Our
proposed similar ES-based learning model can be divided into four stages:

1. Preprocess the sequence datasets and extract Emerging Sequence candidates.
2. Select the most discriminative Emerging Sequences.
3. Transform the sequences into tokenized transactional datasets.
4. Train the classifier by Emerging Sequences.

To validate our 4 stage learning model, we perform experiments on two types
of datasets, one from software engineering and another from bioinformatics. We
compare our approach to two other techniques, one based on frequent subse-
quences and another doing exact match, to illustrate the discriminative power
of ESs and the performance of the sliding window matching mechanism. The ex-
periments show that our similar ES-based classification model outperforms the
other two approaches by up to 20% in prediction accuracy. When our algorithm
is trained by using jumping emerging sequences (i.e. subsequences present in a
group and totally absent or negligible in others), the best performance can be
achieved.

In the next section, we introduce some terminologies and define the problem.
In Section 3, we describe the sequence mining algorithm and the feature selec-
tion strategy. Section 4 presents the classification based on ESs. We present the
prediction performance of our proposed approach in Section 5. Related work is
discussed in Section 6. Finally, Section 7 presents our conclusions.



Contrasting Sequence Groups by Emerging Sequences 3

2 Preliminaries and Problem Definition

In this section, we first explain some notations used throughout this paper. Then
a formal definition of the problem is given.

2.1 Terminology

Let I = {i1, i2, . . . , ik} be a set of all items, or the alphabet, a sequence is an
ordered list of items from I. Given a sequence S = 〈s1, s2, . . . , sn〉 and a sequence
T = 〈t1, t2, . . . , tm〉, we say that S is a subsequence of T or T contains S, denoted
as S v T , if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that s1 = tj1 ,
s2 = tj2 , . . ., sn = tjn .

Definition 1 (Subsequence Occurrence). Given a sequence S = 〈s1, s2, . . . , sn〉
and a subsequence S′ = 〈s′1, s′2, . . . , s′m〉 of S, an occurrence of S′ is a sequence
of indices {i1, i2, . . . , im}, whose items represent the positions of elements in S.

For instance, if sequence S = 〈B,C, B, C,A, C〉, and its subsequence S′ =
〈B,C〉. There are 5 occurrences of S′ in S: {1, 2}, {1, 4}, {1, 6}, {3, 4} and {3, 6}.
Definition 2 (Gap Constraint). The gap constraint is specified by a positive
integer g. In a subsequence occurrence os = {i1, i2, i3, . . . , im}, the difference of
any two adjacent indices is ik+1− ik. If ik+1− ik ≤ g +1, we say the occurrence
os fulfills the g-gap constraint.

For example, if g = 1, the occurrences of S′ {1, 2} and {3, 4} fulfill the 1-gap
constraint (also 0-gap) but {1, 4}, {1, 6} and {3, 6} do not.

Definition 3 (Count and Support). Given a sequence dataset Dc, where c is
a class label, Dc consists of a set of sequences. The count of a sequence α, denoted
as count(α,Dc), is the number of sequences in Dc containing α; while the support
support(α,Dc) is the ratio between its count and the number of sequences in Dc.

For example, in Table 1, if the gap constraint is 0, the count of the sequence
α = 〈a, b〉 in Dpos is 3, while support(α,Dpos) = count(α,Dpos)

3 = 100%, meaning
all sequences contain α.

The notion of Emerging Sequences (ESs) was introduced by Zäıane et al. [28],
here we generalize this notion and define:

Definition 4 (Emerging Sequences). Given two contrasting sequence classes,
Emerging Sequences (ESs) are subsequences that are frequent in sequences of one
group and less frequent in the sequences of another, and thus distinguishing or
contrasting sequences of different classes.

Given two contrasting sequence datasets Dpos and Dneg and a sequence
α, if support(α,Dpos) − support(α,Dneg) > δ, where δ is the minimum dif-
ference threshold, α is an Emerging Sequence distinguishing Dpos from Dneg.
For instance, in Table 1, subsequence α = 〈a, b〉 is an emerging sequence dis-
tinguishing Dpos from Dneg, when the minimum difference δ = 40%. Because
support(α,Dpos)− support(α,Dneg) = 100%− 50% > δ.



4 Contrasting Sequence Groups by Emerging Sequences

Table 1. A sequence dataset example.

sequence ID sequences labels

1 abcac pos
2 cab pos
3 bcab pos

4 acabd neg
5 bda neg

Definition 5 (Edit Distance). Edit Distance between two sequences is given
by the minimum number of operations needed to transform one sequence into the
other, where an operation is an insertion, deletion, or substitution of a single
item.

For instance, given s1 = 〈kitten〉 and s2 = 〈sitting〉, three operations are needed
to convert s1 into s2 (substitute k with s, substitute e with i, insert g). So the
edit distance between them is distance(s1, s2) = 3. Edit distance is used to
measure the similarity between sequences.

2.2 Problem Definition

Given two contrasting sequence groups Dpos and Dneg as the training sets, the
target of our research is to build a model based on discriminative subsequences.
When classifying new unknown sequences, we expect to distinguish sequences in
one group from another. We believe the Emerging Sequences can facilitate the
classification and thus improve the prediction accuracy.

3 Sequence Mining and Feature Selection

The data on which we focus are sequence data. To distinguish one group of
sequence data from another, representative features must be extracted. However,
in the domain of sequence data, the number of useful features is exponential in
the size of the data. To refine numerous features, Lesh et al. demonstrated that
subsequences can reduce the size of features, meanwhile improve the accuracy
of classifiers [17]. In their approach, however, they did not consider any gap
constraint and apply exact matches only. In this section, we explain how we
first preprocess the datasets and extract the ESs candidates; then implement a
dynamic feature selection to mine the most discriminative subsequences.

3.1 ES candidates Mining

To find the Emerging Sequence candidates, the following domain-and-classifier-
independent heuristics are useful for selecting sequences to serve as features [17]:



Contrasting Sequence Groups by Emerging Sequences 5

– Features should be frequent.
– Features should be distinctive of at least one class.

In other words, the ES candidates should be common in one group, and ex-
ceptional in another. Let Dpos and Dneg to be two classes of sequences; the
supports of a ES candidate α in both classes, denoted as support(α,Dpos) and
support(α,Dneg), needs to meet the following conditions:

support(α,Dpos) > θ (1)

support(α,Dneg) ≤ θ (2)

where θ is the minimum support threshold. Therefore, any subsequence fulfilling
the conditions is discriminative.

As sequence mining is well developed, many existing algorithms, such as
GSP [26], SPADE [29], PrefixSpan [23], and SPAM [2] can extract frequent sub-
sequences easily. However, there are two problems by extracting ESs with those
algorithms. One challenge is the low efficiency: the support thresholds in mining
distinguishing patterns need to be lower than those used for mining frequent
patterns [7], which means the minimum support offers very weak pruning power
on the large search spaces [15]. Another problem of previous algorithms is that,
items do not have to be appearing closely with each other in the original se-
quence, while the gaps between items are significant in comparing sequences.
Hence, we implement a Generalized Suffix Tree (GST) [11] based algorithm to
extract ES candidates.

Fig. 1. An example of the Generalized Suffix Tree (GST). This GST is built by two
sequences s1 = 〈abcdab〉 and s2 = 〈dbab〉. It has 4 internal nodes, and 0 is the root.

Figure 1 shows an example of a GST built by two sequences. Every edge
starting from the root has a suffix attached with it, and the indices at the leaves
indicate the original sequence ID of the suffix, e.g. the edge 〈cdab 1$〉 is a suffix of



6 Contrasting Sequence Groups by Emerging Sequences

the sequence s1 because it ends with 1$. Since the supports of subsequences are
stored in the internal nodes of GST, ES candidates can be extracted efficiently.

The advantage of the suffix tree-based framework is that ES candidates min-
ing can be done in linear time. However, only subsequences fulfilling the 0-gap
constraint are mined, i.e. items have to be appearing immediately next to each
other in the original sequence. To handle the low gap constraint subsequences, we
propose a sliding window matching mechanism for the distance metric between
sequences; more information is provided in Section 4.2.

3.2 Feature Selection

After preprocessing, numerous ES candidates are extracted. In this section, we
refine the result and select the most discriminative subsequences as ESs. Ex-
isting studies on categorical data demonstrate that, discriminative patterns can
improve the prediction accuracy [8] [18]. Therefore, we believe the most Emerg-
ing Sequences can help to contrast sequence groups as well.

To evaluate the discriminative power of subsequences, a similar mechanism
with Contrast Sets [3] is applied. Given two sequence groups Dpos and Dneg, the
ES candidates are ranked by the supports difference:

sup diff = support(α,Dpos)− support(α,Dneg)

The larger sup diff is, the more discriminative the subsequence.
The selected features should be representative enough so that every original

sequence can be covered - i.e. all sequences should be expressed by the selected
features. To avoid numerous emerging sequences, a dynamic feature selection
strategy is adopted [13]. Each sequence in the input dataset is to be expressed by
the selected features. However, for any sequence, only the top-m subsequences,
based on sup diff , are kept. It guarantees that each sequence can be represented
by at least m ESs (the high-ranked ones) and the database does not become too
large due to the possible sheer number of candidate subsequences.

The dynamic feature selection algorithm is presented in Algorithm 1. For each
sequence in the dataset D, we check inclusion of any subsequence (i.e. candidate
feature) sorted by sup diff . We mark candidate subsequences that are included
in the input sequences (Line 6) up to m per sequence (Line 8). Then, we output
the union of all marked subsequences (Line 13).

Figure 2 presents the 4 stages of our proposed learning model. The minimum
support θ in Stage 1 is set to 50% as an example. The numbers in the brackets
after ESs are their supports in the positive and the negative class respectively.

4 Transformation and Classification

After preprocessing and feature selection, ESs are extracted to contrast sequence
groups. In this section, the sequence datasets are transformed to transactional
datasets in order to be in a suitable form for learning algorithms. Then, a classi-
fication algorithm trained by ESs is proposed. The transactions are simple sets



Contrasting Sequence Groups by Emerging Sequences 7

Input: the sequence dataset D, the sorted set of Emerging Sequence candidates
ESc, the minimum subsequence number m

Output: The set of Emerging Sequences ES
foreach sequence ∈ D do1

count ← 0;2

foreach candidate ∈ ESc do3

if candidate v sequence then4

count ← count + 1;5

mark the candidate ;6

end7

if count = m then8

break;9

end10

end11

end12

ES ← all marked subsequences in ESc;13

Algorithm 1: Dynamic Feature Selection.

of tokens representing ESs. Each ES is represented by a token (i.e. a simple ID)
used within transactions (See Fig 2).

4.1 Transformation to transactional datasets

To transform a sequence using the Emerging Sequence set representation, we im-
plement a sliding window matching mechanism to consider similar subsequences.
Given a sequence S of length ls, an emerging sequence es of length le, and ls ≥ le,
we first extract a subsequence S1 of length le starting from the first index of S,
whose items are contiguous in S. Then we compare S1 and es, if they are sim-
ilar (i.e. not necessarily an exact match), the corresponding transaction should
contain the token representing es. If not, we slide the window of length le to one
position right to extract a new subsequence S2, and compare it with es again.
So there are ls − le + 1 subsequences in total.

For example, given a sequence S = 〈abcde〉 and an emerging sequence es =
〈bad〉, since the length of es is 3; 5−3+1 = 3 subsequences 〈abc〉, 〈bcd〉, and 〈cde〉
are extracted and compared with the emerging sequence es; no exact matches
but 〈bcd〉 could be similar to 〈bad〉 (see below).

To compare the emerging sequence and the extracted subsequences, we in-
troduce a maximum difference γ ∈ [0, 1]. First we calculate the edit distance
between sequences. If the distance is equal to or lower than γ × le, we say they
are similar. For instance, when comparing the emerging sequence es = 〈bad〉
and the subsequence seq = {bcd}, if γ = 0.4, as distance(es, seq) = 1 < (γ × 3),
they are similar. When γ = 0, the sequence S has to contain the emerging se-
quence (i.e. exact match); when γ = 1, any subsequence is considered a match
regardless.



8 Contrasting Sequence Groups by Emerging Sequences

Fig. 2. Four stages of classification. In Stage 1 and 2, ESs fulfilling 0-gap constraint
are extracted. We transform the sequence dataset to a transactional dataset in Stage
3. The classification is performed in Stage 4.

The sliding window mechanism allows us to consider similar matches instead
of only exact matches. This strategy improves the prediction accuracy.

4.2 Classification

On the classification stage, we implement a Näıve Bayes (NB) classifier based on
Emerging Sequences. Trained by representative features, NB outperforms other
state-of-art learning algorithms. In [19], Li et al. compared the performances of
crf-NB with SVM [6], C4.5 [24], Bagging [4] and Boosting [10], and found crf-NB
had the highest prediction accuracy.

A Näıve Bayes classifier [16] assumes that all features are independent. Given
a sequence S and a set of independent subsequences seqindep = {seq1, seq2, . . . , seqn},
the sequence S can be represented by a set of subsequence-value pairs: S =
{seq1 = v1, seq2 = v2, seq3 = v3, ..., seqn = vn}, where vi is either true or false.
When C is the class set, according to the Bayes rules, the probability that se-
quence S is in the class c is:

p(c|S) =
p(S|c)p(c)

p(S)
(3)

where p(S|c) is the conditional probability of sequence S when class label c is
known, and c ∈ C. Due to the independence of subsequences, p(S|c) can be
rewritten as:

p(S|c) =
∏

i

p(seqi = vi|c) (4)



Contrasting Sequence Groups by Emerging Sequences 9

Therefore, the class label predicted by Näıve Bayes is:

predict(S) = arg maxc∈Cp(c)×
∏

i

p(seqi = vi|c) (5)

In [25], Rish proved that the class-conditional mutual information is not a
good predictor of Näıve Bayes performance, i.e. when features are independent,
the Näıve Bayes classifier may not have the best prediction accuracy. Therefore,
in the Emerging Sequences Näıve Bayes (es-NB), we do not assume the indepen-
dence of subsequences. To convert the original Näıve Bayes to es-NB, we simply
choose the Emerging Sequences to build the feature set.

predict′(S) = arg maxc∈Cp(c)×
∏

i

p(esi = vi|c) (6)

Equation 6 is used to predict labels, where {es1, es2, . . . , esm} is the set of
Emerging Sequences.

5 Experimental Results

To evaluate the performance of our proposed classification model, we test the
classifier on two types of datasets. The results are presented in this section.

5.1 Evaluation Methodology

Our proposed similar Emerging Sequence-based algorithm (Similar ES) can be
divided into four stages (See Figure 2):

1. Subsequences, which fulfill the discriminative conditions (support(α,Dpos) >
θ and support(α,Dneg) ≤ θ) are chosen as candidates.

2. Emerging Sequences are selected, so each sequence can be covered by the
top-m ESs.

3. Transform the sequence datasets to transactional datasets, and subsequences
that are similar with ESs are considered as well.

4. Train es-NB classifier.

For comparison, we design two other models, one based on frequencies, where
frequent subsequences in the positive class are considered discriminant, and one
identical to our approach but doing exact matches (Exact ES):

– Frequency-based Algorithm: In Stage 1, subsequences that are frequent con-
stitute the feature set (support(α,Dpos) > θ); in Stage 2, subsequences are
ranked by their frequencies; and in Stage 3, only exact matching subse-
quences are considered in transformation.

– exact ESs-based Algorithm: Stages 1 and 2 are the same with our Similar
ESs-based algorithm, while only exact matching subsequences are considered
in Stage 3.



10 Contrasting Sequence Groups by Emerging Sequences

The motivation for the frequency-based algorithm is that if we rank sub-
sequences according to frequency, those discriminative ones usually have high
ranks [22]. We can evaluate the effect of ESs according to the comparison be-
tween this approach and the exact ESs-based Algorithm. Exact ESs-based Algo-
rithm is used to test the performance of the sliding window mechanism. For fair
comparison, we choose the same parameters when applicable, e.g. the parameter
m in Section 3.2 is set to 2 in all experiments.

We apply the F-measure to evaluate the prediction performance. The F-
measure is a harmonic average between precision and recall; the relations are
illustrated in Table 2:

Table 2. Precision and Recall.

Correct Results
E1 E2

Obtained Results
E1 TP (true positive) FP (false positive)
E2 FN (false negative) TN (true negative)

Precision =
TP

TP + FP
,Recall =

TP

TP + FN

The F-measure can be interpreted as a weighted average of the precision and
recall and is typically defined as follows:

F −measure =
2× Precision×Recall

Precision + Recall

Finally, we perform 6-fold cross validation, and the average F-measure of the
6 folds is reported for each dataset.

5.2 Comparisons on Two Types of Datasets

The first type of datasets we use is the UNIX user commands dataset from UCI
Machine Learning Repository [1]. It contains 9 sets of sanitized user data drawn
from the command histories of 8 UNIX computer users at Purdue University.
This dataset only keeps command names, flags, and shell meta characters, while
removing filenames, user names, directory structures etc. The average number
of each sequence group is 1011, and the average length of sequences is 27. The
size of the alphabet is 2345. We believe different users have discriminative habits
when typing commands. In each experiment, two users’ commands are chosen,
and the F-measures and standard deviations are presented in Row 1-5 of Table 3.
The minimum support θ is set to 0.01, and the maximum difference γ is set to
0.1 for this dataset.



Contrasting Sequence Groups by Emerging Sequences 11

The second dataset is the epitope data, which are short linear peptides (amino
acid sequences) generated by cleavage of antigenic proteins [9]. The identification
of epitopes in protein sequences is important for understanding disease patho-
genesis, and a major step involves identifying the peptides that bind to a target
major histocompatibility complex (MHC) molecule. The average number of each
sequence group is 363, and the average length of sequences is 13. The size of the
alphabet is 20. To contrast the binding and non-binding peptides, we perform the
test on six groups of the epitope data, and the results are presented in Row 6-11
of Table 3. The minimum support θ is set to 0.05, and the maximum difference
γ is set to 0.2.

Table 3. Classification performances of three algorithms.

Datasets Frequency-based exact ESs-based similar ESs-based

user 0 and 3 0.891992± 0.0280118 0.953464± 0.0121005 0.962192± 0.00864717
user 0 and 5 0.869967± 0.0250203 0.939128± 0.0107074 0.940028± 0.0118862
user 2 and 7 0.94854± 0.0110985 0.969787± 0.00733708 0.969818± 0.00861439
user 7 and 8 0.818205± 0.0154953 0.852122± 0.0180784 0.853639± 0.0233047
user 2 and 3 0.965973± 0.0225253 0.984494± 0.00798139 0.984516± 0.00600006

I-Ek 0.760296± 0.0299356 0.859395± 0.0237948 0.862556± 0.023571
HLA-DR1 0.63103± 0.0218163 0.72197± 0.0382523 0.741143± 0.0228598
HLA-DQ2 0.661909± 0.0620348 0.811726± 0.0936836 0.864592± 0.0300073
HLA-DQ4 0.712941± 0.0581559 0.789487± 0.0922259 0.821227± 0.055203
HLA-DR3 0.607697± 0.051646 0.757886± 0.0329568 0.777372± 0.0662611
HLA-DR7 0.696771± 0.0255892 0.770727± 0.0323399 0.790606± 0.035915

From Table 3, we observe that, our proposed similar ESs-based algorithm
achieves satisfactory accuracies, comparing with the other two simpler approaches.
By comparing the first two approaches (frequent subsequences versus emerging
sequences), we find that Emerging Sequences play a significant role in classifica-
tion: the F-measures are improved by up to 15%. The sliding window mechanism
enhances the classification as well: the F-measures are improved by up to 5%.
However, its improvement also depends on the datasets. An extreme example is
the result of user 2 and 3 (Row 5), where the second and third algorithms have
similar F-measures. The reason for that is that users 2 and 3 have one length-1
ES respectively. When the maximum difference γ is set to 0.1, our framework
always seeks exact matching subsequences, in other words, both approaches be-
come literally identical.

A problem we notice is that, the performances on the UNIX command dataset
is much better than those on the epitope dataset. One explanation is that, the
epitope dataset is already preprocessed by removing short, unnatural, and dupli-



12 Contrasting Sequence Groups by Emerging Sequences

cated peptides, while the frequencies of peptides are important for our algorithm.
Therefore, our preprocessing-embedded model works better on raw data.

5.3 Performances of Varying Minimum Support

Our Similar ESs-based algorithm achieves very high accuracy on the UNIX user
command dataset. In this sub-section, we test the performance on UNIX com-
mand dataset by varying the minimum support threshold.

Table 4. Classification performances of different minimum supports.

θ user 0 and 3 user 7 and 8 user 2 and 7

0.01 0.962192± 0.00864717 0.853639± 0.0233047 0.969818± 0.00861439
0.05 0.934213± 0.0104158 0.84044± 0.0210007 0.954692± 0.0125252
0.09 0.920798± 0.0184558 0.799181± 0.0159464 0.923499± 0.0162301
0.13 0.896651± 0.0226247 0.727808± 0.013115 0.876666± 0.00943212
0.17 0.865009± 0.0182603 0.718475± 0.0192607 0.851387± 0.0126434
0.21 0.917635± 0.0127357 0.663929± 0.00603273 0.828419± 0.0110561
0.25 0.84761± 0.0222 0.629819± 0.0100243 0.777707± 0.031677
0.29 0.801563± 0.028182 0.573211± 0.0103331 0.706538± 0.0177003
0.33 0.785189± 0.0258754 0.573587± 0.0102116 0.703857± 0.0172083

Table 4 presents the F-measures for different minimum supports on three
datasets. With the increase of the minimum support, the classification accuracy
degrades. The reason for that is, the minimum support threshold eliminates
some emerging sequences of high discriminative power. When θ is set to 0.01,
the Similar ESs-based model achieves the highest accuracy. Given two groups
of sequences (the target group and the contrasting group), Stage 1 of our algo-
rithm ensures that the ESs candidates hardly appear in the contrasting group,
while Stage 2 selects the high-frequent candidates in the target group. In other
words, the most emerging sequences are frequent in the target group, while
they (almost) cannot be found in the contrasting group. We name this type of
subsequences jumping emerging sequences (JESs). In conclusion, our proposed
algorithm achieves the best performance when the classifier is trained by JESs.

6 Related Works

In many domains, comparing groups is significant and the fundamental purpose
is to learn the differences between contrasting classes. Contrast sets (CSs) [3] and
emerging patterns (EPs) [7] contrast between groups of categorical data. Some
classification algorithms were developed by implementing CSs and EPs [8] [18].



Contrasting Sequence Groups by Emerging Sequences 13

Those classifiers achieve satisfactory performances because of the discriminative
power of the features.

To mine contrasting subsequences, an algorithm ConSGapMiner was pro-
posed by Ji et al. [14]. There are two steps of their algorithm: first, a DFS
(Depth First Search) tree is built to enumerate all possible subsequence candi-
dates; then, for each candidate, the bitset operations are applied to prune nodes
which cannot fulfill the g-gap constraint. However, ConSGapMiner is not an
efficient algorithm because of the nature of its data structure.

0 500 1000 1500
0

200

400

600

800

1000

1200

Number of Sequences in Each Dataset

R
un

 T
im

e(
se

co
nd

s)

similar ES
ConSGapMiner

(a) Minimum Support θ = 0.2.

0 500 1000 1500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Sequences in Each Dataset

R
un

 T
im

e(
se

co
nd

s)

similar ES
ConSGapMiner

(b) Minimum Support θ = 0.05.

Fig. 3. Scalability of Similar ES versus ConSGapMiner with increasing size of Unix
command dataset.

Another related work is emerging substrings [5] proposed by Chan et al.
Emerging substrings, which are motivated by EPs, occur more frequently in
one class rather than in other classes. Based on the Generalized Suffix Tree
(GST) [11], emerging substrings can be extracted in linear time. Comparing with
ConSGapMiner [14], this algorithm can only mine substrings, i.e. items have
to be appearing immediately next to each other in the original sequence. The
problem of this algorithm is that, only exact matching substrings are considered
in classification, while our approach solves this problem by the sliding window
mechanism. ConSGapMiner, if used in Stage 1 of our framework would give
a similar accuracy in general. However, the execution time would be slower as
illustrated in Figure 3 due to the exponential growth of the data structure used
in ConSGapMiner.

Generally, the contrasting sequences are always based on the frequencies of
subsequences or substrings. Lin et al. implemented the Contrast Sets on time se-
ries data [21]. Instead of calculating the supports of subsequences, they compared
subsequences by Euclidean Distance. This strategy cannot be implemented on
sequence data directly, because the frequencies of subsequences are ignored.

A recently work, which is similar to our framework, concentrates on the soft-
ware behaviours application [22]. They mine iterative patterns from software be-
haviours, and distinguish events that generate failures by an SVM classifier. One



14 Contrasting Sequence Groups by Emerging Sequences

primary difference between this framework and ours is that, in our algorithm,
items in subsequences have to be close to each other in the original sequence,
while it is not important in the software behaviours application. Indeed the gap
they use is undetermined and arbitrarily large.

7 Conclusion

In this paper, we define Emerging Sequences (ESs) as subsequences that are
frequent in sequences of one group and less frequent in the sequences of another,
and thus distinguishing or contrasting sequences of different classes. There are
two challenges to distinguish sequence classes: the extraction of ESs is not triv-
ially efficient and only exact matches of sequences are considered. In our work we
address those problems by a suffix tree-based framework and a sliding window
matching mechanism for the distance metric between sequences. We propose a
classifier for sequence data based on Emerging Sequences.

Evaluating against two learning algorithms based on frequent subsequences
and exact matching subsequences, the experiments on two datasets show that our
similar ESs-based classification model outperforms the baseline approaches by
up to 20% in prediction accuracy. When our algorithm is trained using jumping
emerging sequences, the best performance can be achieved.

The shown evaluation is based on a Näıve Bayes classifier since it gave better
results with our Emerging Sequence patterns on those datasets, than other clas-
sifiers such as an Associative Classifier. The Associative classifier, however, gave
better results using our Emerging Sequence patterns on other protein data, not
reported in this paper. One interesting question which remains an open problem
is how to select the best classifier given a sequence dataset or given properties
of a set of discovered discriminative sequences.

References

1. A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.
2. Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pattern

mining using a bitmap representation. In Knowledge Discovery and Data Mining
Conference (KDD), pages 429–435, 2002.

3. Stephen D. Bay and Michael J. Pazzani. Detecting change in categorical data: Min-
ing contrast sets. In Knowledge Discovery and Data Mining Conference (KDD99),
pages 302–306, 1999.

4. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
5. Sarah Chan, Ben Kao, Chi Lap Yip, and Michael Tang. Mining emerging sub-

strings. In Database Systems for Advanced Applications (DASFAA), page 119,
2003.

6. Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

7. Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: discovering
trends and differences. In KDD ’99: Proceedings of the fifth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 43–52, New
York, NY, USA, 1999. ACM.



Contrasting Sequence Groups by Emerging Sequences 15

8. Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li. CAEP: Classifica-
tion by aggregating emerging patterns. In Discovery Science, pages 30–42, 1999.

9. Yasser EL-Manzalawy, Drena Dobbs, and Vasant Honavar. On evaluating mhc-ii
binding peptide prediction methods. PLoS ONE, 3(9):e3268, 09 2008.

10. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In International Conference on Machine Learning (ICML), pages 148–156, 1996.

11. Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, January 1997.

12. Jiawei Han and Micheline Kamber. Data Mining, Concepts and Techniques. Mor-
gan Kaufmann, 2001.

13. S. Vahid Jazayeri and Osmar R. Zäıane. Plant protein localization using discrim-
inative and frequent partition-based subsequences. In ICDM Workshops, pages
228–237, 2008.

14. Xiaonan Ji, James Bailey, and Guozhu Dong. Mining minimal distinguishing sub-
sequence patterns with gap constraints. Knowl. Inf. Syst., 11(3):259–286, 2007.

15. J. Bailey K. Ramamohanarao and G. Dong. tutorial Contrast Data Mining: Meth-
ods and Applications. International Conference on Data Mining (ICDM), 2007.

16. Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classifiers.
In National Conference on Artificial Intelligence, pages 223–228, 1992.

17. Neal Lesh, Mohammed Javeed Zaki, and Mitsunori Ogihara. Mining features
for sequence classification. In Knowledge Discovery and Data Mining Conference
(KDD), pages 342–346, 1999.

18. Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Instance-based classifi-
cation by emerging patterns. In PKDD, pages 191–200, 2000.

19. Jinyan Li and Qiang Yang. Strong compound-risk factors: Efficient discovery
through emerging patterns and contrast sets. IEEE Transactions on Information
Technology in Biomedicine, 11(5):544–552, 2007.

20. Tim Funting Liao. Statoistical Group Comparison. Wiley’s Series in probability
and Statistics, 2002.

21. Jessica Lin and Eamonn J. Keogh. Group sax: Extending the notion of contrast sets
to time series and multimedia data. In In proceedings of the 10th European Con-
ference on Principles and Practice of Knowledge Discovery in Databases (PKDD),
pages 284–296, 2006.

22. David Lo, Hong Cheng, Jiawei Han, and Siau-Cheng Khoo. Classification of soft-
ware behaviors for failure detection: A discriminative pattern mining approach. In
Knowledge Discovery and Data Mining Conference (KDD), 2009.

23. Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and Meichun Hsu. Prefixspan: Mining sequential patterns by prefix-
projected growth. In International Conference on Data Engineering (ICDE), pages
215–224, 2001.

24. Ross J. Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann Series
in Machine Learning). Morgan Kaufmann, January 1993.

25. Irina Rish. An empirical study of the naive bayes classifier. In IJCAIInternational
Joint Conferences on Artificial Intelligence-01 workshop on “Empirical Methods in
AI”, 2001.

26. Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: General-
izations and performance improvements. In EDBT, pages 3–17, 1996.

27. Lusheng Wang, Hao Zhao, Guozhu Dong, and Jianping Li. On the complexity of
finding emerging patterns. Theor. Comput. Sci., 335(1):15–27, 2005.



16 Contrasting Sequence Groups by Emerging Sequences

28. Osmar R. Zäıane, Kalina Yacef, and Judy Kay. Finding top-n emerging sequences
to contrast sequence sets. Technical Report TR07-03, Department of Computing
Science, University of Alberta, February 2007.

29. Mohammed Javeed Zaki. Efficient enumeration of frequent sequences. In CIKM,
pages 68–75, 1998.


