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Abstract: Construction equipment constitutes a significant portion of investment in fixed assets by large contractors. To make the right
decisions on equipment repair, rebuilding, disposal, or equipment fleet optimization to maximize the return of investment, the contractors
need to predict the residual value of heavy construction equipment to an acceptable level of accuracy. Current practice of using rule-of-
thumb or statistical regression methods cannot satisfactorily capture the dynamic relationship between the residual value of a piece of
heavy equipment and its influencing factors, and such rules or models are difficult to integrate into a decision support system. This paper
introduces a data mining based approach for estimating the residual value of heavy construction equipment using a predictive data mining
model, and its potential benefits on the decision making of construction equipment management. Compared to the current practice of
assessing equipment residual values, the proposed approach demonstrates advantages of ease of use, better interpretability, and adequate
accuracy.
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Introduction

The owning and operation of construction equipment constitutes a
significant portion of yearly spending for large contractors engag-
ing in equipment-intensive projects such as earth moving, high-
way, and industrial installations. According to Stewart �2006�, the
total construction equipment replacement value in North America
of the top 250 construction and mining related companies reached
nearly US$100 billion in 2006. To minimize the equipment cost
per unit of service or maximize the stream of profits generated
from the equipment investment, the contractors need to make the
right decisions on equipment acquisition, repair/replacement/
disposal, and reshuffle their equipment fleet on a regular basis in
response to rapid changes in construction markets.

Among all the factors impacting such decisions, equipment
residual value is cited as one of the most important, yet uncertain,
with no consensus on the method of determination �Perry and
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Glyer 1990; Lucko and Vorster 2004�. The residual value of con-
struction equipment is the expected selling price in the market at
a point of its service life. When the need arises for the determi-
nation of equipment residual value for equipment management
decisions, such as equipment repair, rebuild, disposal, or replace-
ment, the equipment under consideration has not yet been subject
to the pricing process in the market �e.g. auction�, therefore the
market value of a piece of equipment can only be estimated based
on experience, historical auction cases, or postulated formulas. As
a wide variety of factors exert impact on the market value of
construction equipment, including age, manufacturer, model, in-
tensity of use, care, as well as market supply and demand, it is not
surprising that no industrial criteria currently exist for an evalua-
tion on the price of used construction equipment.

Research on estimating the depreciation and residual values of
heavy equipment is conducted extensively in the agricultural and
forestry industries, where similar or same equipment is generally
used, and equipment cost constitutes a significant portion of the
total production cost. Previous research efforts tended to use sta-
tistical regression approaches in order to establish functional re-
lationships between the residual value of machinery and the
known impact factors �McNeill 1979; Reid and Bradford 1983;
Cross and Perry 1995; Unterschultz and Mumey 1996�. In par-
ticular, the Cross and Perry �1995� method made its way to the
American Society of Agricultural Engineers �ASAE� standard,
“Agricultural Machinery Management Data” �ASAE 2003� for
estimating the residual values of major types of agricultural
equipment. In the construction industry, Lucko et al. �2006�
investigated the effectiveness of applying a similar statistical
approach to estimate the residual value of heavy construction
equipment based on equipment auction data.

Several issues make it difficult or impossible to find a univer-
sal solution using the statistical regression method. First, different
equipment categories display different behaviors in depreciation,

as pointed out by Cross and Perry �1995� for agricultural machin-
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ery. The same observation holds true for construction equipment;
large, heavy-duty, special-purpose equipment depreciates faster
than small, multifunction equipment Second, some influencing
factors on equipment residual value are dynamic and changing
constantly, and their degree of impact may fluctuate over time
�e.g. microeconomic indicators�, and some other factors are very
difficult to quantify as input for the regression model �e.g.,
technological progress and renovation�. Third, the regression
model is more appropriate for a specific class of equipment in a
narrow range of model series, but this makes it difficult to collect
sufficient samples to warrant statistical significance. Last, multi-
collinearity is a widely acknowledged problem for statistical re-
gression that influences both the stability and accuracy of the
derived statistical regression model. Some features of data
samples �e.g., equipment age versus usage, and equipment age
versus condition ratings� for equipment price evaluation have a
relatively high coefficient of correlation.

This paper introduces an approach for predicting the residual
value of construction equipment using the data mining technique.
Data mining is an interdisciplinary science of statistics, machine
learning, database, information theory, visualization, etc., with the
objective of discovering valid, novel, potentially useful, and ulti-
mately understandable patterns in data �Fayyad et al. 1996�. As a
hybrid of multiple disciplines, data mining integrates their per-
spective plausible features for knowledge extraction, validation,
presentation, and deployment. The technique for which we advo-
cate is a predictive data mining algorithm, the AutoRegression
Tree �ART� proposed by Meek et al. �2002�. This technique is
utilized in this research to build a tree-structured nonlinear regres-
sion model based on large amounts of construction equipment
auction data. The ART algorithm is chosen in this research for the
building of predictive data mining models in consideration of its
high interpretability and accuracy. A prediction model represented
as a tree structure is more meaningful to decision makers in con-
struction equipment management, because a tree-type model is
more accurate in mimicking the nondeterministic nonlinear rela-
tionship between the input-output variables and is much simpler

to interpret. The logical meaning of the tree-type model is inher-

mation, Cross and Perry �1995� estimated price models for nine

182 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / MAY/J

Downloaded 12 Dec 2008 to 129.128.4.60. Redistribution subject to 
ently apparent, providing a convincing and transparent reasoning
path to the prediction. Simply put, the analysis by means of a tree
�or decision tree� is to settle on a set of “if-then” split conditions
that allow for accurate predictions via careful data partitioning.
After validation, the data mining model is embedded in a con-
struction equipment information system for the prediction of
equipment residual value. The integration of a data mining model
with the equipment information system provides the user with the
capability of browsing through the visualized data mining model,
making prediction on the fleet equipment while being informed of
the reasoning process. In addition, the automated processing of
data mining makes it possible to update the model in real time to
reflect recent changes in the equipment auction market. After
comparing the data mining approach with the statistical regres-
sion approach, the paper concludes that the data mining model
can better capture the complex and dynamic relationship between
equipment residual value and its various influencing factors, and
is easier to integrate with the current equipment management in-
formation system.

Literature Review

Depreciation is defined as the decrease in the residual value of
equipment over time. Considering the fact that equipment cost
constitutes a significant portion of the total production cost and
the different options available for equipment acquisition, accurate
evaluation of depreciation is crucial for a successful business
in agriculture, mining, or construction. Therefore much research
was devoted to quantifying the depreciation patterns of heavy
equipment.

One of the most comprehensive studies on depreciation of
agricultural equipment was the one conducted by Cross and Perry
�1995�. Their research objective was to identify the most fitted
mathematical functions for modeling the relationship between
equipment residual value �RV� and the known explanatory vari-

ables as stated in the following general form:
RV = f�age,usage,care,manufacturer,auctionType,region,microeconomicsVariables� �1�
Given the fact that different types of equipment display dif-
ferent behaviors of depreciation, and that depreciation normally
occurs in a nonlinear way, Cross and Perry �1995� proposed to
transform the dependent variable RV and the two most statisti-
cally significant explanatory variables age and annual hours of
use using the following Box–Cox transformation:

y� = � �y� − 1�
�

, � � 0

log�y� , � = 0

�2�

Depending on the transformation parameters � obtained by
maximum likelihood estimation or the Bayesian methods from
the data, the Box–Cox transformation enables the regression
model on RV to encompass a wide variety of functions, such as
linear, exponential, and logarithmic. Using the Box–Cox transfor-
types of machinery and equipment used in agricultural produc-
tion. Based on their research results, ASAE �2003� recommended
a generalized regression formula for the estimation of residual
value percentage �residual value divided by original list price�
using equipment age and annual hours of use with different co-
efficients for different types of equipment.

Other similar research includes that conducted by McNeill
�1979�, Reid and Bradford �1983�, Perry et al. �1990�, and Unter-
schultz and Mumey �1996�. To evaluate and compare different
research results and functional forms, Dumler et al. �2000� and
Wu and Perry �2004� each evaluated and compared different func-
tional forms and debated over their applications in the agricultural
industry.

Statistical regression was applied for building prediction mod-
els for the residual value of heavy construction equipment �Lucko

and Vorster 2004; Lucko et al. 2006, 2007�. Upon identification of
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influential factors to the residual value of construction equipment,
the researchers proposed several forms of multiple linear regres-
sion models �plain model, best model, and trade model� based
on equipment auction data after statistical tests. The research
confirmed that although equipment age is indeed the most signifi-
cant influential factor of equipment residual value, other factors
including the manufacturer, condition rating, auction region, and
microeconomic indicators also contributed to the “goodness-of-
fit” of the prediction model with statistical significance �Lucko
et al. 2006�. In their work, they used a narrow range of equip-
ment, namely, the track dozers of 74.57–148.39 kW �100–199
horsepower� were selected as an implementation example to
illustrate the methodology of applying regression analysis to pre-
dict the residual value of heavy construction equipment.

In the area of construction research, there have been many
applications involving prediction using inferred models from
data. Lee et al. �2004� used the GUIDE regression tree algorithm
to quantify the cumulative impact of change orders on productiv-
ity; Arditi and Pulket �2005� applied a boosted decision tree for
predicting the outcome of construction litigation; Kim et al.
�2004� proposed a neural network-based classification system for
automatic assessment of aggregate quality using laser imaging
results.

Data Mining for Prediction of Equipment Residual
Value

Prediction of a numerical value is a common data mining task to
infer the most likely value of a response variable based on the
known predictor variables, and can be represented in the follow-
ing generalized form: y= f�x1 ,x2 , . . . ,xn ;r1 ,r2 , . . . ,rk�, where
y�target variable of the continuous data type, xi

�i=1,2 , . . . ,n��predictor variables of either categorical or con-
tinuous data types, and ri �i=1,2 , . . . ,k��model parameters.
Instead of a mathematical or statistical function as defined tradi-
tionally, f� � stands for a data mining model representing the dis-
covered patterns or rules from observation data by a data mining
algorithm. The model parameters ri are introduced in some algo-
rithms to fine-tune the model structure or incorporate prior knowl-
edge into the model generation process.

Predictive data mining uses complex computer algorithms to
search through the data and generalizes the rules and patterns
reflecting the relationship between the target variable and predic-
tor variables. The “divide-and-conquer” and “heuristic” methods
are two representative ones for inferring predictive models from
data:
• The divide-and-conquer method: The algorithm searches over

the data space and recursively partitions it into subspace,
where more pure information or promising relations can be
found. For example, the algorithms of a decision tree family
use a measurement such as information gain or chi-square test
to search for most informative splitting of data space by an
input variable as well as a split-on value so that the partitioned
data space contains more pure information on the prediction
results. Using the prediction problem for equipment residual
value as an example, after the algorithm identifies the input
variable equipment age as the most relevant and informative
feature to the residual value, it would have a tendency of split-
ting the data using equipment age. Exemplar algorithms using
“divide-and-conquer” method are C4.5 by Quinlan �1993�,
Categorization and Regression Tree �CART� by Breiman et al.

�1984� and ART �Meek et al. 2002�.
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• The heuristic method: Both artificial neural network �ANN�
�Anderson 1995� and the support vector machine �Burges
1998� use a trial and error method to iteratively obtain an
optimized predictive model based on predefined error
measurement.
Though different algorithms use different methods for model

inference, they have some common features which make them
excel over traditional statistical regression approaches for predic-
tive modeling on equipment residual value:
1. The models are inferred from data �recorded facts� with

minimum user input. In contrast to the hypothesis-and-
testing approach used in statistical regression, search and
generalization is used in predictive data mining for the infer-
ence of patterns or rules in training data. The assumptions on
statistical distributions or postulated functional forms make a
statistical regression model subjective, and vary from one
model to another; whereas, a data mining model is derived
by an algorithm based on the available data, and involves
minimum user interference in model generation.

2. Data mining models are represented by a computer model
capable of storing complex rules and patterns by utilizing
data structures, algorithms, and indexes. Therefore, complex
rules and patterns that exist in data can be uncovered and
represented.

3. Many data mining models, such as the family of decision
trees or Bayesian inference, can be visualized in an intuitive
manner for human interpretation.

4. Data mining models adapt to changes easily. As data mining
can be designed as an automated process in a computer sys-
tem, a data mining model can be updated in real time after
the updating of the data sources.

AutoRegressive Tree Algorithm

The AutoRegressive Tree is a data mining algorithm proposed
by Meek et al. �2002� to establish a nonlinear relationship be-
tween a set of explanatory variables and a target numeric variable
through the exploration of the training data set. Much research
�e.g., Chipman et al. �2002�� proved that, for a large number of
domain problems, the data space can be partitioned into sub-
regions where a simple linear regression model exists for each
subregion. As the partitioning of the data space can be conve-
niently expressed in a decision tree structure with subsets of
data residing in tree leaves where regression models are grown,
this type of model is called treed regression �Alexander and
Grimshaw 1996�. Different approaches have been proposed to
induce the decision tree structure with linear regression models at
its leaf nodes, such as m5 by Quilan �1992�, RETIS by Karalic
�1992�, and Bayesian treed models by Chipman et al. �2002�.
Though different algorithms generate similar treed models with a
common goal of partitioning data space into subsets in such a way
that the overall goodness-of-fit of the model to training data is
maximized, different mechanisms and measurements are used to
partition the data space and build local linear models. The ART
algorithm uses the Bayesian technique to generate the tree struc-
ture and model parameters.

The Bayesian updating technique is a statistical inference
method for model induction based on both prior assumption and
observed facts. In contrast to the traditional statistical method
assuming the model parameters are fixed, the Bayesian updating
method considers the model parameters as changing variants,

which can be described by the current statistical distribution. A
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prior distribution of model parameters is assumed based on past
experiences or subjective judgment. However, if the factual infor-
mation is available, the prior distribution is updated by the
likelihood that the observed factual data fall into the prior distri-
bution. This updating process draws prior probability distribution
closer to its true distribution and hence the posterior probability
of model parameters is more accurately obtained.

The ART algorithm uses this posterior probability of model
structure s to compare different alternatives of tree topology in
terms of their goodness-of-fit to the training data set. Based on the
Bayesian theory

p�s�d� =
p�s�p�d�s�

p�d�
�3�

where p�s �d��given training data d, the probability of fitting
model structure s; p�s��prior probability of model structure s;
p�d �s��marginal probability of observing data d, given model
structure s; and p�d��prior probability of data d.

Because the prior probability p�d� of the training data set is a
constant, Meek et al. �2002� defines p�s�p�d �s� as the Bayesian
score for the ART model. The first product p�s� is the assumed
structure prior, which is a subjective judgment on the probability
distribution of model parameters whereas the second product
p�d �s� is the marginal likelihood of training data falling into the
assumed prior distribution for given structure s.

For each candidate model structure in the data partitioning
process, ART builds a normal multilinear regression model for the
subset of data at each leaf node. Assuming the linear model pa-
rameters at the leaf nodes are independent from each other, the
Bayesian model score is calculated as

score�s� = �
i=1

L

LeafScore�li� �4�

The LeafScore in Eq. �4� at each leaf node is calculated
according to Eq. �3�, using an assumed prior distribution
p�s�=0.1��� ���number of model parameters� and normal likeli-
hood function. See Meek et al. �2002� for details on the Bayesian
score calculation for each leaf node.

The ART algorithm uses the divide-and-conquer method to
partition the data space and builds regression models at each leaf
node. The pseudocode of the algorithm is shown in the following:

List 1. Pseudo-code of AutoRegressive Tree Algorithm

1. #Start with the root node

2. build a linear regression model at the root node

3. calculate Bayesian model score

4. #Compare alternative splitting options

5. For each input attribute A

6. #Determine candidate split values split��

7. # in case of categorical attribute

8. If input attribute A is a categorical attribute

9. set split��� distinct nominal values of A

10. else

11. #in case of continuous attribute

12. set split��� 7 splitting points of 8 equal-probability areas
assuming the input attribute conforms to a Normal distribution

13. end if

14. # Loop through every split-on value to evaluate current splitting
option

15. For each value in split��
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16. partition the data using current attribute A and split-on value

17. build linear regression model for each leaf node

18. calculate Bayesian model score

19. calculate increase in model score compared with model prior
to splitting

20. store current splitting parameters and model score

21. end For

22. End For

23. choose attribute and split-on value which leads to highest
increase in model score

24. #continue with the recursive partitioning

25. split data using the selected attribute and split-on value

26. recursively repeat the above process for each subset of data

27. #Terminate splitting process

28. If the splitting will not increase the model score or

the number of cases in the leaf node is less than specified
threshold value

29. terminate splitting

30. end If

To improve the model accuracy, the ART algorithm uses a
dynamic splitting method proposed by Chickering et al. �2001� to
determine candidate values for data splitting. Instead of
determining these values at the beginning of the algorithm and
using them for all the subsequent partitioning, the algorithm
recalculates the candidate split-on values for features of the data
subset at each step of partitioning:
• For a categorical attribute, it uses distinct nominal values in

the subset of data �lines 8 and 9 in List 1�, and
• For a continuous attribute, it uses seven intermediate points

that split the attribute values into eight equal-probability areas
assuming normal distribution �lines 10–12 in List 1�.

ART Model for Prediction of Equipment Residual
Value

Although it is theoretically possible to build a single predictive
data mining model for all types of heavy construction equipment
so long as they are fully represented by training data, the model of
this scale would be of poor quality and difficult to interpret.
Therefore, separate data mining models are built for each major
category of heavy construction equipment. In this section, the
data mining process is exemplified by selecting the equipment
category of wheel loaders for model building and validation.

Data Sources

The primary data source for model building is Last BidTM, an
online construction equipment database covering up-to-date auc-
tion results across the U.S. and international markets �Prism Busi-
ness Media Inc. 2005, Equipment Watch Business, San Jose, CA�.
The wheel loader auctions across the United States and Canada
from 1996 to 2005 are selected with the available information on
make, model, year of build, auction year, conditions, auction lo-
cations, and transaction price. The “usage of equipment” informa-
tion is missing from this data source because “it is difficult to
confirm the data with confidence” �Vorster 2004�. Other potential
factors of influence on auction results, �i.e., gross domestic prod-
uct �GDP� and yearly construction investment� are obtained from

the U.S. Bureau of Economic Analysis and Statistics Canada.
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Feature Selection

The residual value of a wheel loader is influenced by various
features which have a potential impact on its market transaction
price. To enable the data mining model to capture the inherent
relationship, all the factors of potential influence to the residual
value should be fully identified, and some features need to be
transformed either to fit the model input or improve the model
accuracy. Two examples of feature transformation for this model
are equipment age and auction location. Equipment age measures
the number of years the equipment has been in service at the time
of auction, and has a direct impact on equipment residual value,
therefore, it is derived and used together with auction year to
describe the timeline of the auctioned equipment. For predictor
variable auction location, the state/province is given in the auc-
tion data as a characterization attribute. To better represent the
location variable, a simple transformation is conducted to derive
the country of auction and the region of auction as two additional
candidate attributes for this variable. A calculation of information
gain based on the information theory �Shannon 1948� determines
that the region of auction is the best attribute among the three
�country, region, state/province� to represent the auction location
because it has the maximum discriminating power on the re-
sponse variable of auction price in the data set.

The usage of equipment �accumulated operation hours of a
wheel loader� is considered an important factor on equipment
residual value, but it is not available from the data source. As-
suming normal use of equipment in its lifetime, the age and hours
of use have a high coefficient of correlation �e.g., 0.75 in a re-
search conducted by Perry et al. �1990� on farm tractors�. There-
fore, it is safe to ignore this variable while including the age in
years in training data to represent the usage of equipment.

To determine the condition rating of a piece of equipment with
minimal bias, evaluation of equipment needs to follow the
detailed guidelines set out by the equipment auctioneer, and is
usually carried out by accredited equipment appraisers. The de-
termination of condition rating for construction equipment is also
explained by Lucko et al. �2006�.

Finally, the following features are selected for building the
predictive data mining model for equipment residual value:
• Make: Manufacturer of wheel loader.
• Model: Model of wheel loader.
• Horsepower: The rated engine horse power �HP�.
• Age in years: Obtained based on the year of build and the

auction year.
• Auction year: The year at which auction occurred.
• Auction location: The auction region �United States Southeast,

Southwest, West, Mideast, Northeast, and Canada�.
• Condition rating: The rating of equipment in terms of physical

conditions �new, excellent, very good, good, and fair�.
• Annual construction investment: Annual construction invest-

ment in the United States and Canada in US$ million at the
year of auction.

• GDP: The Gross Domestic Product in the United States and
Canada in US$ billion at the year of auction.
To measure the equipment price in constant dollars, the re-

sponse variable auction price is indexed to the year 2000 based
on the consumer price index obtained from the U.S. Bureau of
Labor and Statistics as well as Statistics Canada.

Data Quality Control

Data quality in data mining measures the overall fit of data to

knowledge generation. In addition to the general requirements,
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such as consistent format, no missing values and outliers, for data
quality in decision analysis, the data should be representative of
all the features in full range and unbiased quantity. If there is a
systematic lack of attribute values �e.g., lack of equipment auc-
tion cases in a price range, or lack of an auction region in the
training data� the predictive model for equipment residual value
would have a poor accuracy of prediction for the defined domain
problem.

The attribute values of “unknown” for equipment condition
are considered as missing values, and replaced by the mode value
of “good.” Some auction cases of transaction prices over
US$200,000 are removed from the collected data as isolated cases
resulting from customized build or special attachments. Finally, a
total of 8,589 effective cases are obtained for model generation.

A preliminary check is conducted as to the representation of
predictive features and auction results by the training data. Fig. 1
shows the histogram of the discretized auction price, the auction
prices from 6,000 to 200,000 are binned into 14 cohorts based on
Sturge’s rule �number of bins=1+3.3 log�N�, where N�number
of data points�, with no obvious missing data in any price cohorts.
The representation data on each predictor variable is checked in
the same principle based on its frequency diagram �for categorical
variables� or histogram �for continuous variables�.

Model Generation and Validation

The ART algorithm includes two parameters for model structure
control: One is the coefficient of complexity � controlling the
growth of the tree; a higher value increases the likelihood of node
splitting to generate a bushy tree, and the other is the minimum
number of cases M in each leaf node. The sensitivity analysis of
� and M on prediction accuracy, using 90% of the data for train-
ing and the remaining 10% for validation, found out that predic-
tion accuracy is not sensitive to � but is sensitive to M. The
model parameters � and M are determined as 0.5 and 20, respec-
tively, for the final model generation.

To verify the stability and accuracy of the predictive model for
equipment residual value, a ten-fold cross-validation method is
used for model generation and validation. The wheel loader train-
ing data comprised of 8,589 effective cases is randomly divided
into 10 partitions of approximately equal size, each containing
around 859 cases. A data mining model is generated and validated
for ten iterations according to the following procedure: hold each
partition and use the remaining of the entire data set as the train-
ing data to generate the ART model, and then use the reserved
partition as out-of-sample data for the validation test.

Test results indicate that the ten models are similar in their tree
topography and linear regression functions at leaf nodes. Fig. 2
partially shows the structure of the derived tree model at the first
few levels. A comparison of the ten models found that the top
levels of the tree structure starting from the root node are the
same, whereas some nodes at the bottom levels vary slightly.

In addition to the regression tree, the algorithm also generates
an output which ranks the predictor variables as per their dis-
criminating power on equipment auction price. The same ranking
is generated from all the ten iterations as in the following in a
decreasing order: equipment age, horsepower, make, auction year,
GDP, Construction Investment, model, and condition. The fact
that equipment age, horsepower, and make are the top three rel-
evant features for prediction can be observed from the tree struc-
ture: the three features are most frequently selected at the top
levels to partition the data space �Fig. 2�. Another finding of in-

terest is that the algorithm ranks equipment model as one of the
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least predictive features on equipment residual value even though
equipment model is typically one of the decisive factors on its
residual value. To explain this result, only the top 50 equipment
models with a large number of auction cases accounting for the
over 70% of the total cases are selected for the model building,
and it turns out that equipment model is ranked as one of the
powerful features for prediction. In consideration that there are
over 300 models of wheel loaders in the training data, the infor-
mation conveyed by this feature on equipment residual value is
noisy, therefore the algorithm cannot identify equipment model as
a persuasive explanatory variable on equipment residual value.

To cross validate the prediction accuracy of the data mining
model, three measures are used to evaluate prediction errors in
each iteration:
�1� Relative squared error �RSE�: Evaluates the percentage of

the total squared error between the predicted value and actual
value out of the total squared error if using the average of
actual values as a prediction. That is, the total squared error
is normalized by dividing it by the total squared error of a
simple default predictor using the average of the actual val-
ues for prediction

RSE =

�
i=1

n

�pi − ai�2

�
i=1

n

�ai − ā�2

�5�

where pi is the predicted value; ai is the actual value; and ā

Fig. 1. Histogram of
is the average of actual values in the validation sample.
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�2� Root relative squared error �RRSE�: Takes the root of RSE so
that the error rate is reduced to the same magnitude as the
response variable �i.e., the same dimensions as the quantity
being predicted�.

�3� Mean absolute error �MAE�: The average of absolute predic-
tion errors �i.e., without taking into account the sign of the
error�. Contrary to the mean squared error, which tends to
exaggerate the effect of outliers, the MAE is not affected by
extreme values and all sizes of errors are treated evenly.

The ten-fold cross validation generated similar test results on
RSE, RRSE, and MAE as summarized in Table 1. On average,
after using the predictive model, the total squared error is reduced
by 94.5% compared to using the average value as the prediction.
This error reduction in the same magnitude is 76.7% and the
mean absolute error of prediction results is US$4,248. About 1%
of the cases are indicated as “unpredictable” by the model; this is
because when a test case falls into a leaf node where no regres-
sion is available due to insufficient information for the creation of
a regression model, or if the number of cases is less than 20.

To evaluate the dispersions of prediction errors, the prediction
errors in US$ are transformed into error percentage rates after
being divided by their perspective actual values, and presented in
box plots for each iteration. As shown in Fig. 3, the ten boxplots
show similar characteristic values �i.e., quartile values at 25, 50,
and 75% denoted by the top, middle, and bottom lines of the box�.
The prediction error rates for the middle 50% cases �the cases
with prediction errors between upper and lower quartiles� are less
than 8.5%, whereas a high degree of dispersion is observed from

loader auction price
wheel
all the ten sets of test results. Each set of test results has a small
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number of outliers with prediction errors outside 1.5 times inter-
quartile range from the median. The prediction errors of each set
follow a bell-shaped distribution, yet with open ends on both
sides.

Both the cross-validation tests and boxplots verify the stability
of the inferred data mining model. The mean absolute error of

Fig. 2. Partial ART data mining model for prediction of equipment res
for lack of space, most of the decision paths are not shown here.�

Table 1. Test Results of Ten-Fold Cross Validation

Partition Missing

Relative
squared error

�RSE %�

Root relative
squared error
�RRSE %�

Mean
absolute error

�MAE�

1 11/859 5.3 23.0 4,289

2 8/859 5.1 22.6 4,105

3 18/859 7.7 27.8 4,594

4 17/859 3.9 19.8 3,972

5 2/859 6.6 25.7 4,064

6 5/859 7.7 27.8 4,743

7 0/859 5.7 23.9 4,391

8 10/859 3.9 19.8 4,211

9 11/859 4.1 20.3 4,032

10 2/859 5.4 23.2 4,075

Average 8.4/859 5.5 23.4 4,248
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US$4,248, representing the deviation of predicted market prices
of the equipment from their transaction prices, is less than 10% of
the average equipment transaction price and deemed acceptable
for heavy construction equipment.

The dispersion of error distribution shows that a small percent-
age of cases have a high degree of deviation, which is attributed
to the fact that these isolated cases are not well represented in the
model; on the other hand, the equipment age being the most im-
portant predictor introduces a certain degree of error when being
measured in the whole number of years. The predictor accuracy
of the current model can be improved if equipment usage data,
rather than equipment age, is available to gauge the intensity of
equipment usage. To improve the prediction accuracy, the final
model is built using the entire data set.

Comparison of ART with ANN and Multivariate
Linear Regression Models

The same prediction problem is also modeled using the ANN
model and the multivariate linear regression �MLR�, and vali-
dated with 10% holdout test. The prediction accuracy is evaluated
on the ANN and MLR models using the same three measures for

alue. �Obtained using Microsoft SQL Server 2005 Analysis Services;
idual v
the ART model, as summarized in Table 2. It shows that both the
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ANN and MLR models perform worse than the ART model in
explaining the variability of auction price and also generate a
higher degree of prediction error.

The higher prediction error of the ANN model can be ex-
plained by the way it handles the categorical input attributes:
Each categorical input attribute is encoded into N−1 �N is the
number of nominal values for the attribute� binary attribute as
model input. A large number of input attributes are created for a
predictive model if there are many categorical features as input,
such as is the case in this problem. As a result, the large number
of input variables quickly decreases the prediction accuracy of the
ANN model. The high prediction error of the MLR model is
attributed to its over-simplified assumption of the linear relation-
ship between the auction price and its predictor variables using a
single statistical regression model.

Deployment of Predictive Data Mining Models
for Equipment Residual Value

The data mining models for the prediction of equipment residual
value were built for major categories of equipment and deployed
in a construction equipment management information system for
testing. Fig. 4 shows a screenshot from the system with the inte-
grated data mining module. After choosing a piece of equipment
from the fleet database, the user gets the projected market price
under given conditions. The sensitivity of the auction price on the
sale date and location can be conducted on a piece of equipment
by changing the input parameters. The user can also browse
through the regression tree model by visually expanding the tree
structure, and moving the mouse cursor over a leaf node to view

Fig. 3. Boxplots for prediction

Table 2. Comparison of ART with ANN and MLE in Prediction Errors

Methods of Prediction
RSE
�%�

RRSE
�%�

MAE
�$�

ART 5.5 23.3 4,248

ANN 22.3 47.2 7,274

MLE 40.4 63.6 11,069
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the multivariate linear regression model. The related historical
cases in the leaf node used for prediction on the current case are
automatically retrieved for comparisons. The visualization of the
regression tree model allows the user to reaffirm the predicted
transaction price or analyze a doubted prediction.

Due to copyright issues, the online equipment auction data
source does not allow for a live connection to external applica-
tions. Otherwise, the data mining for prediction of equipment
residual value can be designed as a fully automated process.
Under a fully automated data mining process, all the procedures
including feature extraction and transformation, data cleaning,
modeling, validation, and deployment can be implemented pro-
grammatically in a streamlined process. One recommendation on
such a data mining enabled system is to design it as a two-mode
application: user mode and developer mode. The user mode in-
teracts directly with the users by exposing the data mining models
for browsing, analysis and prediction; whereas, the developer
mode implements the data mining process with the visual capa-
bility of updating the training data, fine-tuning the model param-
eters, and validating the model.

Discussions

Though data mining serves as a unique modeling approach for
predictive analysis in construction equipment management, there
are several issues which have to be handled carefully to ensure
that the derived model truly reflects the inherent relationships or
rules in reality:
• Problem definition: The inference capability and storage

mechanism of data mining greatly loosens the problem scope
definition compared with the traditional statistical methods;
however, a data mining problem needs to be defined at an
appropriate level to control the model complexity, and model
interpretability. This research divides the equipment into major
categories for which separate models are built up for predic-
tion. The categorization of equipment can be interpreted as
building the first level of a decision tree for all the equipment
in a manual process, followed by the automatic tree growing

rates of cross-validation tests
error
for the remaining part.
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• Data source selection: The data mining algorithms infer the
model structure out of data, hence, the data source used for
mining should contain unbiased, fully represented information
on the data mining problem. The data sources should be suf-
ficient and reliable, with a fair level of data quality.

• Data preparation: As demonstrated in this research, the data
used for the model inference should be appropriately repre-
sented by a set of predictive features and also quality insured.
Common methods for preparation are feature transformation
and preselection, data validation, evaluation of data represen-
tation on both input features and output results, etc.

• Model inference: Select a data mining algorithm which fits
into the data mining problem, is easy to use and simple to
interpret. In this application, neither neural network nor CART
algorithms were selected because the former generates a
model that is difficult to interpret, whereas the latter only pre-
dicts a ranged value for the response variable.

• Model validation: The data mining model must be validated in
order to be effective. Out-of-sample cases should be used for
the validation of the model inferred from in-sample data. The
multifold cross validation is used in this research to verify that
the generated data mining model is stable, representative, and
accurate.
Finally, incorporating the prior domain knowledge into the

data mining process is both necessary and important, in spite of
the fact that data mining is an automated or semiautomated pro-
cess of discovering knowledge from data. The feature selection
and model validation in this research demonstrates the importance
of domain knowledge for data mining. It would be difficult to

Fig. 4. Screenshot of the equipment management information system
width denotes the variance of auction price on the node�
obtain an unbiased accurate predictive model if model features
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are not represented by the data or the generated model is not
validated based on domain knowledge.

Summary and Conclusions

This paper presents a data mining approach for the prediction of
construction equipment residual value and its deployment in a
construction equipment information system. In summary, the data
mining-based solution provides some benefits which cannot pos-
sibly be achieved with the current rule-of-thumb or statistical
methods:
• The data mining model is capable of capturing the relation-

ships, patterns, and rules that exist in a dynamic and complex
environment. The prediction of equipment residual value in-
volves a large number of influential factors which are subject
to changes over time. Statistical regression tackles this prob-
lem by inferring the statistical relationship between the re-
sidual value and a few meticulously selected predictors and
cannot easily adapt to changes.

• The data mining model is primarily data driven and less de-
pendent on personal experiences. The data mining algorithm
searches over the data space to infer a model structure that
reflects the relationship between the equipment residual value
and its influential factors. Prior knowledge can be incorporated
into a data mining process, but the model inference is based
more on recorded facts, less on individual experience.

• Many data mining models are transparent and interpretable.

The diamond location denotes the mean of the auction price, and its
�note:
Many data mining models, such as the decision tree, and the
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Bayesian inference, can be visualized for human judgment and
analysis, with the reasoning method and process also ex-
plained. For a few unpredictable cases, because historical re-
lated cases are missing from the training data, or the cases
with a high level of deviation, the user is always informed or
has an opportunity of making further investigation. Therefore
the “white box” data mining models help to make informed
decisions in the prediction of equipment residual value.

• The data mining model can be deployed in the equipment
management information system with an automated process of
modeling and updating.
Using the predictive modeling for the wheel loader residual

value as an example, this paper explains how a typical data min-
ing algorithm, the AutoRegressive Tree, infers knowledge from
data. The entire process of data mining from data preparation,
model generation, and model validation is illustrated by using the
ART model of wheel loaders. Multifold cross validation and
boxplots are used for testing the stability and accuracy of the
generated data mining model. The paper also demonstrates the
advantages of data mining enabled applications in construction
equipment management by deploying the predictive models of
equipment residual value in an equipment management informa-
tion system.

In summary, predictive data mining provides a more accurate,
flexible, and interpretable approach for assessing the residual
value of heavy construction equipment. Using the embedded pre-
dictive modules for equipment residual value, the sellers can
determine the best time to sell their machines, the buyers can
determine the best time to purchase their required machines, and
the equipment owners can perform life cycle analysis on equip-
ment to make decisions on equipment repair, overhaul, disposal
and replacement. Other data mining applications in construction
equipment management, including outlier mining for problem
identification �Fan et al. 2007�, and time series forecasting for
budget planning are also underway in this research. The data min-
ing captures the complexity and dynamics of construction equip-
ment management by making inferences out of data, which could
not be realized by using conjectured mathematical or statistical
models. The application of data mining in construction equipment
management makes it possible for the management team to gain
insight into the large amounts of data collected in construction
equipment operations and management, and to make proactive
decisions.
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