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Abstract 
 

Many lung nodule computer-aided detection 
methods have been proposed to help radiologists in 
their decision making. Because high sensitivity is 
essential in the candidate identification stage, there 
are countless false positives produced by the initial 
suspect nodule generation process, giving more work 
to radiologists. The difficulty of false positive reduction 
lies in the variation of the appearances of the potential 
nodules, and the imbalance distribution between the 
amount of nodule and non-nodule candidates in the 
dataset. To solve these challenges, we extend the 
random subspace method to a novel Cost Sensitive 
Adaptive Random Subspace ensemble (CSARS), so as 
to increase the diversity among the components and 
overcome imbalanced data classification. 
Experimental results show the effectiveness of the 
proposed method in terms of G-mean and AUC in 
comparison with commonly used methods. 
 
1. Introduction 
 

Lung cancer is one of the main public health 
issues in developed countries [1], and early detection 
of pulmonary nodules is an important clinical 
indication for early-stage lung cancer diagnosis. 
Computer aided detection (CAD) can provide initial 
nodule detection which may help expert radiologists in 
their decision making. A CAD scheme for nodule 
detection in CT (Computed Tomography) images can 
be broadly divided into a nodule identification step and 
a false-positive reduction step. For finding the 
suspicious nodules, the initial detection of the CAD 
requires high sensitivity, and so, it produces a number 
of false positives. Since the radiologists must examine 
each identified object, it is highly desirable to reduce 
false positives while retaining the true positives [2].  

The purpose of false-positive reduction is to 
remove these false positives (FPs) as much as possible 
while retaining a relatively high sensitivity. It is a 

binary classification between the nodule class (positive 
class) and non-nodule class (negative class). The false-
positive reduction step, or classification step, is a 
critical part in the Lung nodule detection system [3-5].  

There are two significant problems in the 
classification of the potential nodules: one is the 
enormous variances in the volumes, shapes, 
appearances of the suspicious nodule objects and one 
single classifier cannot model the complex data; the 
other is that the two classes are skewed and have 
extremely unequal misclassification costs, which is a 
typical class imbalance problem [6-7]. The imbalanced 
data issue usually occurs in computer-aided detection 
systems since the “healthy” class is far better 
represented than the “diseased” [8]. Due to the nature 
of learning algorithms, class imbalance is often a major 
challenge as it hinders the ability of classifiers to learn 
the minority class. This is due to the fact that most 
classifiers assume an even distribution among classes 
and assume an equal misclassification cost, resulting in 
classifiers being overwhelmed by the majority class 
and ignoring the minority class examples. 

An important trend in research is the appearance of 
ensemble learners, which can improve the performance 
of automated lung nodule detection. However, the key 
factor for the success of ensemble classifier 
construction is the diversity between components. In 
addition, cost-sensitive learning (CSL) adapts the 
existing classifier learning model to bias toward the 
positive class, so as to solve the skewed class 
distribution and misclassification cost problem. 
Therefore, we propose a cost sensitive adaptive 
random subspace ensemble algorithm for learning 
imbalanced potential nodule data. The novel ensemble 
can guarantee the diversity and complementary of each 
component; and this principle can determine the 
amount of non-redundant components in the ensemble 
classifier adaptively. In addition, the cost sensitive 
strategy can improve the recognition of the nodule 
class with threshold selection for maximizing the 
imbalanced data evaluation. We empirically investigate 
and compare the proposed method with the state-of-



the-art approaches in the class imbalance classification. 
Experimental results show the unique feature of our 
algorithm for overcoming the challenges and 
demonstrate a promising effectiveness. 

 
2. Method Proposed 

 
2.1. Random subspace (RS) method 

 
Ensembles are often capable of greater predictive 

performance than any of their individual classifiers. Ho 
showed that the random subspace method was able to 
improve the generalization error [9]. In the random 
subspace method, repeatedly for an ensemble of given 
size, an individual classifier is built by randomly 
projecting the original data into a subspace. and 
training a proper base learner on this subspace The 
various classifiers in the ensemble capture possible 
patterns that are informative on the classification. In 
the imbalanced suspicious nodule classification 
problem, we choose the random subspace method 
based on the fact that: (1) Before discriminating the 
nodules and non-nodules, many features are extracted 
in order to describe nodule objects sufficiently. By 
constructing classifiers in random subspaces one may 
solve the high dimensional problem. (2) Varying the 
feature subsets gives an opportunity to control the 
diversity of feature sets provided to each classifier in 
the ensemble and therefore ultimately combines 
classifiers with different characteristics and achieves 
improved accuracy; (3) Furthermore, random 
subspaces can avoid the strong bias of noisy features. 
The algorithm is described in Algorithm 1. 

Algorithm 1 Random Subspace Method (RS) 
Input: Training set TrainingSet, Test set TestSet, 

Ensemble size B, Ratio of feature subspace Rf 
Training: 

for k=1,2,...,B 
1. Select an random subspace Dk from the original 

feature set of dataset TrainingSet with Rf 
2. Construct a classifier Ck in Dk  

3. Ensemble=Ensemble∪Ck 

for end 

Testing: 
4. Predict the unknown instances by majority average 

voting with Ensemble on the TestSet 
 
2.2. Cost-sensitive adaptive random subspace  
 

Under the current standard RS scheme, there are 
three disadvantages requiring improvement: 1) It 
assumes a relatively balanced class distribution and 
equal misclassification costs, resulting in low accuracy 
of the positive class; 2) it only picks the feature subset 

for the original feature set randomly without 
considering the diversity of instances; 3) it has random 
characteristics through the selection of feature subsets, 
but it is very possible that there are overlaps of the 
features used in constructing individual classifiers on 
different subspaces, since there is no formulation to 
guarantee small or reduced overlap. 

Therefore, we propose an improvement of RS, called 
CSARS (Cost Sensitive Adaptive Random subspace) 
for addressing the three disadvantages. CSARS made 
three improvements: 1) we employ cost-sensitive 
learning in each subspace to discriminate the 
imbalanced potential nodule data with adjusting 
decision threshold; 2) in order to obtain more diversity 
in each classifier, we extend the common random 
subspace method by integrating bootstrapping samples; 
3) we use a formulation to make sure to maximize 
diversity in each sub-dataset. 

The cost-sensitive learning technique takes 
misclassification costs into account during the model 
construction, and does not modify the imbalanced data 
distribution directly. Given a certain cost matrix, a cost 
sensitive-learning will classify an instance x into 
positive class if and only if: 

( | ) ( ) ( | ) ( )P x C P x C                           (1)                            

where C(+) and C(-) are misclassification cost of 
positive and negative class. 

Therefore the theoretical threshold for making a 
decision on classifying instances into positive is 
obtained as: 
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where Crf is ratio of two cost value, Crf= C(+)/C(-). 
Thus the final decision criterion is only decided by 

the ratio misclassification cost Crf. In the normal 
classification without considering the cost, Crf  is 1, that 
means both of the classes have the same weight. In the 
class imbalance scenario, we need to change the 
default decision threshold by adjusting the parameter 
of the Crf. The value of Crf  plays a crucial role in the 
construction of cost-sensitive learning, but the value of 
Crf is unknown in many domains where it is in fact 
difficult to specify the precise cost ratio information. 
Therefore, to achieve the best performance on the 
imbalanced data, we can adjust Crf using a heuristic 
search strategy guided by an evaluation measure.. 
Adjusting the decision threshold can move the output 
threshold towards the inexpensive class such that 
instances with high costs become harder to be 
misclassified [10]. In the procedure of searching for 
the best Crf, evaluation measures play a crucial role in 
both assessing the classification performance and 
guiding the modeling of the classifier. For imbalanced 
datasets, the average accuracy is not an appropriate 



evaluation metric.  We use G-mean as the fitness 
function to guild the search of Crf parameter. G-mean 
is the geometric mean of specificity and sensitivity, 
which is commonly used when performance of both 
classes is concerned and expected to be high 
simultaneously. It is defined as follows: 

        TP TN
G mean

TP FN TN FP
  

 
              (3) 

Since diversity is known to be an important factor 
affecting the generalization performance of ensemble 
methods, several means have been proposed to get 
varied base-classifiers inside an ensemble. In order to 
obtain more diversity in each classifier, we extend the 
common RS method by integrating bootstrapping 
samples. In the bootstrapping method, different 
training subsets are generated with uniform random 
selection with replacement. In addition, in the random 
subspace method, different features in each training 
subsets are randomly chosen for producing component 
classifiers. However, this cannot ensure the diversity of 
each subset since the instances and the features are 
chosen randomly without considering previously 
selected subspaces for other classifiers. Therefore, to 
improve diversity between each subset, we use a 
formulation to make sure each subset is diverse. 
Firstly, we introduce a concept of overlapping rate: 

 i j

fea ins

subset subset
Overlapping rate

N N


          (4)                                   

where the subset is the sub-dataset within a certain 
subspace, Nfea and Nins are the feature size and instance 
size of each subset. 

In addition, we guarantee that the class ratio of each 
subset follows the one of the original training data 
distribution. We quantify data diversity between each 
subset with the data overlapping region, which 
measures the proportion of feature and instance 
subspace overlap between the training data of different 
classifiers in the ensemble. We then introduce a 
threshold Tover to control the intersection between 
each subset. The overlapping rate of all the subsets 
needs to be smaller than the threshold Tover. 
Therefore Tover is critical to the performance of the 
ensemble. If it is too large, the subsets lack 
diversity. If it is too low, the ensemble size is small, 
diminishing the advantage of ensemble 
classification. It is a trade-off between the diversity 
and the required ensemble size.  

Through quantifying data diversity between each 
subset for a component classifier with the data 
overlapping region which measures the proportion of 
feature and instance subspace overlap between the 
training data of different classifiers in the ensemble, we 
can guarantee the diversity of subsets provided to each 

classifier, and at the same time provide a way to 
adaptively determine in an iterative way the number of 
classifiers in the ensemble. The GenerateDiverseSets 
algorithm can be described as in Algorithm 2. 

Algorithm 2 GenerateDiverseSets 
Input: Training set TrainingSet, Ratio of bootstrap 

samples Rs, Ratio of feature subspace Rf ，
Overlapping region threshold Tover, Stagnation 
rate sr=100 

1. change=0; DiverseSets={}; 
while change<sr do 

2.      A bootstrap sample Ds selected with replacement   
from TrainingSet with Rs 

3.      Generate subset Ds
k
  by selecting a random  

subspace  with Rf  
          if isDiverse(Ds

k, DiverseSets, Tover)==true  
4.           then DiverseSets->add(Ds

k); change=0;    
5.   else change=change+1; 
         end if 

end while 
Output: DiverseSets  

 
The function isDiverse (Ds

k, DiverseSet, Tover) 

examines if the new projection Ds
k is diverse enough 

from the previously collected projections in 
DiverseSet based on the overlapping threshold Tover. 
The generation of projections stops when there is 
stagnation – i.e. after enough trials, no new projection 
is diverse enough from the collected subspaces. The 
number of projections is determined dynamically. 

Algorithm 3 CSARS 
Input: Training set TrainingSet, Test set TestSet, Ratio of 

bootstrap samples Rs, Ratio of feature subspace 
Rf，Overlapping region threshold Tover, 

Training phase: 
1. DiverseSets = GenerateDiverseSets(TrainingSet, Rs, 

Rf, Tover);  
for each subset Dk

 in DiverseSets 
2. Construct a classifier model Lk in Dk

 

3. Select a decision threshold p* for maximizing the G-
mean on the OOB(Dk), bestGM, according to 
adjusting the ratio misclassification cost. 

4. Lk->Subspace= subspace(Dk); Lk-> Threshold = p* 

5. Ensemble=Ensemble∪Lk;  
end for 

Testing phase: 
6. Calculate output from each classifier Lk of Ensemble

with its p* in its Subspace on the TestSet   
7. Generate the final output by aggregating all the outputs  

After obtaining the DiverseSets, each cost-
sensitive classifier is constructed on individual subset 
under different subspaces then ultimately we combine 
classifiers with different characteristics and achieve 
improved performance. Algorithm 3 illustrates the 
CSARS algorithm. Rather than considering the global 



distribution in the whole dataset, we adjust and 
determine the decision threshold diversely in the 
individual subset under different subspaces. We 
attempt to make use of the difference of individual 
classifiers for the performance improvement by 
adjusting the learning focus on the minority class 
differently during training (i.e. diverse decision 
threshold). Since the imbalance ratio is different in 
each sub dataset, the appropriate cost ratio is different 
for each classifier. 

 
3. Experimental study 

 
3.1. Potential Nodule Detection 
 

Our database consists of 98 thin section CT scans 
with 106 solid nodules, obtained from Guangzhou 
hospital in China. These databases include nodules of 
different sizes (3-30mm). The nodule locations of these 
scans are marked by expert radiologists. For obtaining 
the candidate nodules, we employ the 3D hessian 
filter to detect the candidate nodule VOI (Volume of 
Interest) [11] and use a 3D region growing method 
to obtain the core region [12]. Fig. 1 shows an 
example result image of candidate VOI detection. We 
obtained 95 true nodules as positive class and 592 non-
nodules as negative class from the total CT scans.  

 
3.2. Feature extraction 
 

In order to more accurately identify true or false 
positive nodules, we calculated multiple types of 
features for each nodule candidate: intensity, shape and 
gradient. These extracted features are based on the 
characteristics of nodules: 1) the nodules often have 
higher gray values than parts of vessels misidentified 
as nodules; 2) an isolated nodule or a nodule attached 
to a blood vessel is generally either depicted as a 
sphere or has some spherical elements; 3) the true 
nodules have a high concentration because they grow 

from the center to the surrounding. Table 1 describes 
the features extracted from the candidate nodule VOI 
for classification. 

  
Fig. 1 Potential nodule initial detection. TP indicated by arrow, 
other circled spots are FP 

 
3.3. Potential nodules classification 
 
3.3.1 Experiment I: Evaluating the effectiveness of 
CSARS algorithm 

In this experiment, we evaluate the effectiveness of 
our proposed CSARS algorithm. Since the ARS 
ensemble uses the idea of RS and Bagging, we conduct 
the comparison between CSARS, original RS (CSRS), 
Bagging (CSB) as well as the single methods with cost 
sensitive learning. In CSRS and CSB, each training set 
is separated randomly into training subset  (70%) for 
training cost sensitive classifier and validation subset 
(30%) for adjusting decision threshold. The Neural 
network classifier is commonly used to discriminate 
nodules against background patterns. In our work, a 
standard three-layered feed-forward neural network is 
employed as the base learner. In the setting of the 
neural network classifier, the number of input neurons 
is equal to the number of features in a given subspace, 
and the number of neurons in the hidden layer is set to 
be 15. The G-mean is chosen as the evaluation metric. 
In all our experiments, we used 10-fold cross 
validation to train and validate our methods. 

 
Table 1. Feature set for potential nodule classification 

# Feature Type Feature Description 
1-7 Intensity statistical feature The gray value within the objects was characterized by use of 

seven statistics (mean, variance, max, min, skew, kurt, entropy). 
8-12 

 
Intensity 

distribution Radial volume distribution feature [13] The average intensity within each sub-volume along the radial 
directions 

13-19 SI statistical feature [12, 14] The volumetric shape index (SI) representing the local shape 
feature at each voxel was characterized by use of seven statistics. 

20-26 CV statistical feature[12, 14] The volumetric curvedness (CV), which quantifies how highly 
curved a surface is, was characterized by use of seven statistics. 

27-29 

 
Shape 

 

Volume, surface area and compactness Some explicit shape features of VOI 
30-36 Gradient concentration statistical feature 

[15] 
The concentration characterizing the degree of convergence of 
the gradient vectors at each voxel, was characterized by use of 
seven statistics 

37-43 

 
Gradient 

distribution 
Gradient strength statistical feature The gradient strength of the gradient vectors at each voxel, was 

characterized by use of seven statistics 



The ensemble size of RS and Bagging are set to 
50. In the construction of CSARS, we enforce the 
independence of each subset by minimizing the 
overlapping region among the subsets for each 
classifier in the ensemble. This approach allows us to 
determine the ensemble size adaptively with a certain 
overlapping region threshold. Since the original RS 
and Bagging have a limit on the ensemble size, to 
have a fair comparison, we set the maximum of the 
ensemble size of CSARS to the same limit, typically 
fixed at 50. To that end, we selected the first 50 
from the Diversets in the algorithm if the limit is 
exceeded. In the CSARS, the ratio parameters are 
under the default condition where the ratio of 
bootstrap sampling Rs is 0.7 and the ratio of 
features Rf is 0.5. Here we vary the value of Tover to 
exploit the relationship between Tover and the 
classification performance. We adjusted different 
values for the overlapping threshold parameter Tover. 
The range of Tover is [0.2, 0.5], the step is 0.02. With 
each Tover, we conduct a 10-fold cross validation and 
obtain an average G-mean result.  
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Fig. 2 The performance of CSARS while tuning Tover in terms 

of G-mean 
From Figure 2, we can see that the result of G-

mean changes as we vary the value of Tover in CSARS, 
and CSARS can outperform single cost-sensitive 
neural network and other traditional ensemble methods 
when Tover gets to certain value with or without cost-
sensitive learning. CSARS obtains the best G-mean 
0.883 when Tover  is at 0.38.  

Thus, what should the value of Tover be? Clearly, 
this value should not be constant, because in an 
ensemble it determines the diversity and number of 
components, so as to affect the final performance 
directly. Therefore, we have to estimate the optimal 
parameter for obtaining the best performance on each 
dataset. In order to estimate the optimal parameter Tover 
for obtaining the best performance, the best 
overlapping rate threshold Tover is chosen by cross 
validation in the dataset. In imbalanced data case, 
available data instances, mainly instances of the 
minority classes, are insufficient for traditional cross 
validation in the training set. For this reason, we 
randomly divided the original data set into two sets: 
the training set (80%) and the validation set (20%) for 
measuring the performance of each Tover. This process 

is repeated 10 times. The output is a Tover which obtains 
the best G-mean value among all tests.  

After obtaining the optimal Tover for CSARS, we 
compare the CSARS with optimal Tover parameter, with 
the original RS, Bagging, as well as the single solution 
on the test dataset. For CSARS, the section of the 10 
fold cross validation is totally independent from the 
one of cross validation for obtaining the optimal Tover. 
All the results are shown in Table 2. We also evaluate 
the four comparative methods based on the basic 
classifier without injecting cost. To make our 
comparisons more convincing, we further use the AUC 
(Area Under the ROC curve) as the performance 
evaluation which is a commonly used measurement in 
medical CAD systems.  

Table 2. The comparison results of the different ensemble methods 
with or without CSL 

Method Sen. Spec. G-mean Size AUC 

basic 0.635 0.887 0.750 1 0.792Single 
CSL 0.787 0.846 0.816 1 0.833
basic 0.657 0.918 0.777 50 0.826RS 
CSL 0.807 0.896 0.850 50 0.864
basic 0.634 0.929 0.757 50 0.811Bagging 
CSL 0.795 0.884 0.838 50 0.843
basic 0.690 0.925 0.799 37 0.825ARS 
CSL 0.831 0.920 0.874 37 0.893

The results show that the ARS framework 
outperforms other ensemble framework in terms of G-
mean and AUC. Moreover, the threshold adjustment 
with the guidance of G-mean can improve the 
performance of a neural network classifier on the 
imbalanced nodule data. Table 2 also shows the 
ensemble size obtained by CSARS; we can see that the 
size is indeed significantly smaller than the fixed size 
of 50 for the other ensemble method. The empirical 
studies have shown that CSARS can improve the 
generalization performance of ensembles with fewer 
components, that is, the diverse subset construction 
and cost sensitive learning strategy can achieve better 
performance than the complete ensemble on the 
imbalanced data. 
3.3.2 Experiment II: Comparison between CSARS 
and state of the art methods  

In this experiment, we empirically compare 
CSARS against the state-of-the art methods for 
imbalanced data learning, such as AdaCost [16], 
Tomek Link [17], SMOTE [18] and SMOTEBoost 
[19]. AdaCost is a general cost sensitive learning 
integrating ensemble approach, in which the cost 
factor C is set to three according to [16]. Tomek 
Link is an under-sampling method; only examples 
belonging to the majority class are eliminated. All 
the sizes of ensemble methods are set to 50. We do 
not use the non-heuristic random re-sampling in our 



comparison since they have potential drawbacks 
such as information loss or causing overfitting [19]. 
For all re-sampling methods, the minority class was 
oversampled until both classes obtain balanced 
distribution. 

From Table 3, we find that CSARS obtained the 
best performance amongst all the methods. The 
comparable results demonstrate that CSARS 
outperforms the re-sampling techniques. Tomek 
Link is the worst method since it is hard to identify the 
noise when the distribution is complex and 
imbalanced. Some useful border points may also be 
removed as noise, resulting in loss of information. 
SMOTE and SMOTEBoost help in broadening the 
decision region of the positive class blindly without 
regard to the distribution of the majority class. This 
leads to over-generalization so as to inevitably 
decrease the accuracy of the majority class. For the 
general cost sensitive learning method, AdaCost 
obtains an unexpected performance. It may be because 
the parameter of cost is not appropriate, resulting in 
obtaining an unexpected performance. It reveals again 
that the misclassification cost is vital for cost sensitive 
learning, and needs to be searched by some heuristic 
methods. 

Table 3.  The comparison between our method with other 
approaches for imbalanced data learning 

Method Sen. Spec. G-mean AUC 
AdaCost 0.791 0.872 0.831 0.851 

SMOTE 0.813 0.845 0.829 0.856 

SMOTEBoost 0.821 0.849 0.835 0.863 

Tomek link 0.623 0.893 0.746 0.817 

CSARS 0.811 0.920 0.864 0.878 

 
4. Conclusion 

 
The false positive reduction is a class 

imbalance task in the Lung nodule detection. In this 
paper, we have proposed a cost sensitive adaptive 
random subspace ensemble for imbalanced data 
learning. CSARS is a good framework for imbalanced 
data learning as it provides varied and complementary 
base classifiers by explicitly encouraging the diversity 
of subsets used by each classifier and adjusting the 
decision threshold. Through theoretical justifications 
and empirical studies, we demonstrated the 
effectiveness of the method on the performance of 
reducing false positives. The proposed method 
could be applied on the many other potential lesion 
detection problems, such as mass and polyp. 
Furthermore, it can also be applied to other 
imbalanced data learning problems such as fraud 
detection or text classification. 
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