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ABSTRACT
We report on implementing MIRA, a mental health resource chatbot
to support healthcare workers in finding timely and relevant mental
health resources. To generate appropriate queries to our carefully
curated resource database, the chatbot must correctly identify the
intents of an interlocutor and extract relevant entities from the
conversation. With insufficient labelled examples, we employ data
augmentation to generate training data automatically. Moreover,
instead of detecting intent and extracting entities independently
with two different classifiers, we integrate the two tasks by taking
advantage of their interdependencies obtaining 99% accuracy for
intent detection and 95.4% accuracy in entity extraction.

CCS CONCEPTS
• Computing methodologies → Machine learning; Natural
language generation; • Information systems → Information
retrieval.
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1 INTRODUCTION
Chatbots, sometimes referred to as conversational agents, are useful
for communication with individuals with mental health concerns
because they can provide destigmatized and anonymous conversa-
tions with users [1, 17, 21].

Chatbots often employ generativemodels trained on large datasets
for response creation. These models utilize deep learning to synthe-
size outputs and often contain a dynamic lexicon of responses [2].
Implementing rule-based models structures, rather than generative
models, may provide security by limiting the conversation to pre-
defined responses; however, this comes at the expense of response
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creativity. Most models focus specifically on “entity extraction” or
“intent detection” as a subset of general sentence modeling, which
connects input text with learned special indicators that capture the
general meaning of the input (i.e., the intent) in addition to any
relevant words or terms (i.e., entities) [11].

Existing mental health chatbots applications have shown to be ef-
fective in reducing anxiety, depression, and stress [8, 14]. However,
utilizing generative models and large datasets requires careful con-
sideration as thesemodels contain the inherent risk of inappropriate
response generation. For instance, there have been documented
instances of publicly available chatbots, such as ChatGPT, providing
unreliable, inappropriate, or harmful information [5, 9].

One method to mitigate the risk of harmful or inappropriate re-
sponse generation is to adopt a controlled data source for training
purposes. This dataset would include diverse conversation flows
and user statements to help ensure appropriate conversational
responses. However, generation of controlled datasets requires
tedious data curation and manual input of individual examples.
Recently, work has been done investigating data augmentation
techniques in the context of image classification and generation
[19], and some research has been done investigating data augmen-
tation techniques for boosting text classification performance [27].
Manually derived seed data can be expanded by employing a num-
ber of text data augmentation techniques that aim to reduce data
imbalance or increase data diversity [7].

2 METHODS
This study evaluates the utilization of novel data augmentation tech-
niques in developing a training dataset for a mental health system
navigation chatbot. Our research team manually constructed an
initial dataset then expanded this dataset using novel data augmen-
tation techniques. The performance of each dataset was assessed
via intent detection and entity extraction scores on multiple stan-
dard classification models, including Naive Bayes, logistic regres-
sion, Support Vector Machine (SVM), feed-forward neural network,
recurrent neural network (RNN), and Long Short-Term Memory
networks (LSTM). The performance of the initial and augmented
datasets for each model was compared to determine the effective-
ness of data augmentation in this context.

With the assistance of a multidisciplinary team including com-
puting science, psychiatric experts, and people with lived expe-
rience, the initial training dataset was developed by creating a
set of 91 unique intents according to the chatbot’s anticipated
and realized use cases. For example, if a client identified that they
wanted a definition of a specific mental health condition, the intent
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“need_definition” would be detected by the model. One of the re-
sponsibilities of the chatbot is to direct individuals at risk of suicide
or self-harm toward relevant emergency/crisis lines. As such, we
created an intent “suicidal.” Each intent requires a list of example
strings or hypothetical sentences that inform the chatbot of variable
inputs, which could indicate a particular intent.

For ethical purposes, it was essential to the research team that
the training data was modelled in a controlled setting. Uncontrolled
datasets utilize data from external sources (e.g., forums, conver-
sion logs, blogs, etc.), which may contain misinformation or data
that the chatbot can misconstrue (e.g., harmful biases) — poten-
tially producing harmful speech or inaccurate information [25]. To
develop the initial training dataset, researchers manually derived
approximately 3-4 example strings for each of the 91 intents, cre-
ating 357 example strings (257, once 100 test samples had been
held out). This initial dataset was used to train the initial version
of the Intent classifier. However, as with most AI systems, it was
determined that more example strings for each intent (i.e., more
data) would enhance the chatbot’s functionality. Acknowledging
that the initial dataset was insufficient to train a chatbot properly,
the research team employed several data augmentation techniques
(described below) to enhance the initial dataset. This augmented
dataset was used to train the second iteration of the chatbot and
contained 2,292 example strings. In addition to sentence labeling,
entities were annotated. In this step, important keywords that the
chatbot should detect were annotated.

To increase the accuracy of intent detection and entity extraction,
we expanded the dataset by employing some data augmentation
techniques. The following data augmentation techniques were used:

Easy Data Augmentation (EDA): techniques proposed by [27]
to boost text classification task performance. Synonym replacement,
random insertion, random swap, and random deletion are four of
the EDA’s simple but powerful operations.

Synonym Replacement: This common type of data augmen-
tation transforms text into paraphrases by swapping out specific
terms with synonyms. The work by [15] introduces one of the
earliest uses of this replacement in data augmentation. They used
probable synonyms from WordNet to replace words [20].

Embedding Replacement: Comparable to synonym substitu-
tion, embedding replacement techniques look for words that best
match the text’s context while also maintaining the text’s core ideas.
To do this, words from the examples are translated into a latent
representation space, where words from related contexts are placed
closer together [12].

Replacement by Language Models: By anticipating subse-
quent or missing words based on the prior or surrounding context,
language models represent language (classical and respectively
masked language modelling) [3]. Language models provide a more
localized replacement instead of embedding replacements by word
embeddings that consider a global context [18].

With the labeled training data we can train a predictive model
to detect intents from sentences and another predictive model to
extract entities from the same sentences. To achieve this, we used
and compared models using Naïve Bayesian, Logistic Regression,
SVM and different neural network approaches. Neural Network
approaches include a feed-forward neural network, a two-layer,
fully connected neural network with 20 and 30 neurons in the first

and second layers and an output layer; an RNN, an embedding layer
followed by an RNN with a dense layer with 10 neurons and an
output layer; and an LSTM, an embedding layer and an LSTM with
the layer of a 10-dense neuron followed by an output layer. The
feed-forward neural network, RNN, and LSTM are trained for 50
epochs.

In addition since intents and entities have inter-dependencies, we
can take advantage of this interplay between them during detection
and consider a simultaneous detection of the intents and entities. To
do so we experiment with DIET. The Dual Intent and Entity Trans-
former (DIET) model [4] is a transformer based architecture which
can outperform fine-tuned BERT and is six times faster to train.
It has four main components: featurization, transformer, named
entity recognition, and intent classification.

In the featurization component, the input text is transformed
to a series of tokens. Token level one-hot encoding or multi-hot
encoding can be used to get sparse features. Pre-trained word em-
bedding like BERT [6], ConveRT [13], or GloVe [23] can be used to
generate dense features. It adds a special classification token _𝐶𝐿𝑆_
to the end of each sentence which specifies the intent class of that
sentence. In the transformer component, a two layer transform
with relative position attention is used to retrieve context from
the input. Features from the previous component are concatenated
and passed to another fully connected layer with shared weights
across all sequence steps. The named entity recognition component
consumes the output of the transformer component and utilizes
a Conditional Random Field (CRF) layer [16]. Finally, the intent
classification feature uses transformer output for a _𝐶𝐿𝑆_ token to
find the similarity between it and the intent embedding.

The DIET model was trained on the training data for 100 epochs.
28% of the data was selected randomly as test data (at least one
example for each intent), and the remaining was used as training
data. Also, because of class imbalance in both intent detection and
entity extraction tasks, a macro-averaged F1 score was utilized.
An acceptable model should perform well on intent detection and
entity extraction tasks.

3 RESULTS
The intent detection F1, entity extraction F1 and the Average Intent
and Entity (AIE) scores were the primary outcome variables used
to determine intent detection and entity extraction in each dataset.

The AIE score, a macro-averaged F1-score of intent detection
and entity extraction, is defined as follows:

𝐴𝐼𝐸 =
𝐼𝑛𝑡𝑒𝑛𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐹1+𝐸𝑛𝑡𝑖𝑡𝑦𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐹1

2
A higher F1 score is usually preferable, which can be achieved

through increasing recall and precision [24, 28]. F1 scores for intent
detection and entity extraction were calculated for each model with
the original and augmented datasets. The AIE score combines these
two F1 scores to give an overall performance metric for the model.

We observed a mean (SD) increase of 8.7% (6.8%) from pre-
augmentation to post-augmentation on F1 intent detection scores
across all models. Themean (SD) F1 intent detection score was 36.0%
(4.48%) across all models trained on the original dataset, and the
mean (SD) across all models trained on the augmented dataset was
44.7% (32.0%). The DIET architecture model improved the most of all
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models, with an F1 score increase of 23.1% from pre-augmentation
(70.8%) to post-augmentation (97.2%).

We observed a mean (SD) increase of 12.6% (7.20%) from pre-
augmentation to post-augmentation on entity F1 extraction scores
across all models. The mean (SD) F1 entity extraction score of all
models trained on the original dataset was 75.7% (4.48%), and the
mean (SD) of all models trained on the augmented dataset was
88.4% (2.82%). The Diet Architecture model exhibited the most
improvement, with an increase of 28.9% from pre-augmentation
(65.6%) to post-augmentation (94.5%).

We observed a mean (SD) increase of 10.9% (7.0%) from pre
to post-augmentation on AIE scores across all models. The mean
(SD) AIE score was 55.8% (12.7%) across all models trained on the
original dataset, and the mean (SD) across all models trained on the
augmented dataset was 66.7% (17.2%). The DIET architecture model
exhibited the most improvement in AIE scores, with an increase of
26.4% from pre-augmentation (70.8%) to post-augmentation (97.2%).
Figure 1 shows all models’ AIE scores from pre-augmentation to
post-augmentation.

Figure 1: AIE Scores Pre/Post Data Augmentation

4 DISCUSSION
To our knowledge this is the first study to evaluate text-based
data augmentation on baseline machine learning models for intent
detection and entity extraction.We also assessed the performance of
a Dual Intent and Entity Transformer (DIET)model for an artificially
intelligent-based mental health chatbot.

Our data suggest that text-related data augmentation may im-
prove the functionality of a mental health navigation chatbot with-
out the use of large human annotated data. The performance of
baseline machine learning models was evaluated before and after
data augmentation. The results showed improved performance in
all models.

Out of all the models tested, the DIET architecture achieved
the highest level of accuracy on both intent detection and entity
extraction and had the largest improvement in both metrics after
augmentation. Utilizing a transformer-based architecture allowed
the chatbot to detect intent and extract features simultaneously. Al-
though all models improved in performance, the large improvement

in AIE score in the DIET architecture after augmentation may sug-
gest that transformer-based models benefit the most from the data
augmentation techniques, particularly when the inter-dependencies
between intent and entities is taken into account.

Data augmentation techniques have been utilized in computer
vision and image processing [29, 30], but the field of text-based data
augmentation is still in its infancy. The emergence of text-based
augmentation provides the ability to build a dataset from controlled
seed data that assists in avoiding the harms and risk of using LMMs
[7, 22].

The findings of this study support the use of data augmentation
for text-based datasets used to train chatbots in the context of men-
tal health. This process, which relied on seed data developed by
relevant experts, allowed for a cleaner and more reliable dataset
than what would have been available through open-source LMMs.
This is especially significant when considering response genera-
tion in chatbots designed for vulnerable populations. Employing
these techniques can assist in developing safe and informed chat-
bots. To this end, data augmentation may provide a solution to the
problem of misinformation and harmful speech without drastically
compromising performance.

5 CONCLUSION AND FUTURE DIRECTION
The findings of this study supports that text augmentation, on
the scale of an order of magnitude increase in synthetic data, can
improve the predictive capabilities of models performing intent
identification and entity extraction across various architectures,
especially in mental health chatbots. Further, the DIET architecture
performs exceptionally well relative to other tested architectures
at that task, both with the pre-augmented and augmented datasets.
Further, the outlined data augmentation techniques broadly apply
and suggest a pathway for text augmentation across domains and
tasks.

The potential for data augmentation to effectively generate syn-
thetic training on a vast scale is a particularly interesting implica-
tion of this finding. We continued to see an increase in functionality
without the augmented data overfitting the original training dataset.
Recent speculation suggests that natural language datasets will run
out of quality training data before 2026[26], and synthetic data will
become increasingly important if that trend holds.

Further, these results show that datasets with relatively few sam-
ples may produce results comparable to that of relatively larger
datasets when using these augmentation techniques. We see oppor-
tunities for organizations/individuals to create small datasets that,
once augmented, can be used to fine-tune existing large language
models to more narrow tasks, increasing the availability of ma-
chine learning beyond those with the resources to create expansive
datasets; and still saving money for those that do.

Although the results indicate that these data augmentation tech-
niques are effective, further investigation into text-related data
augmentation in mental health chatbots is needed. It is also im-
portant to study the impact of effective data augmentation on the
wider context of large language models and with broader kinds of
datasets. Specific focus on ethical AI practices must consider the
impact of maintaining smaller, controlled datasets that may prevent
the generation of harmful speech or misinformation [10, 25].
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