Discriminative Frequent Pattern Analysis for Effective Classification

Hong Cheng, Xifeng Yan, Jiawei Han, Chih-Wei Hsu

Presented by: Abhishek Srivastava

CMPUT 695 Class Presentation Department of Computing Science University of Alberta

Introduction

Cheng et al. in this paper put forward a new method for feature space conversion of the input to classifiers.

Their method, which mainly makes use of frequent patterns is typically suitable for Support vector machine (SVM) although they demonstrate its effectiveness on other classifiers as well.

The paper is a description of this method along with adequate justification for every step.

This is followed by extensive experimental results to substantiate their claims.

Support Vector Machine (SVM)

Linearly separable data

SVM

The hyper-plane of an SVM may be represented by : (W, X) - b = 0The margins may be represented by : (W, X) - b = 1(W, X) - b = -1

A data point x_i in the positive class is given by : $(W, X_i) - b \ge 1$

A point in the negative class : $(W, X_i) - b \le -1$

 $c_i\{(W, X_i) - b\} \ge 1$

This expression in the dual form may be written as :

$$d(X^{T}) = \sum_{i=1}^{l} y_i \alpha_i (X_i \cdot X^{T}) + b_o$$

SVM

A simple example demonstrating transformation of data to a slightly higher dimension :

$$X = (x_1, x_2, x_3)$$

$$Z : \phi_1(X) = x_1$$

$$\phi_2(X) = x_2$$

$$\phi_3(X) = x_3$$

$$\phi_4(X) = x_1x_2$$

$$\phi_5(X) = (x_3)^2$$

$$\phi_6(X) = x_1x_2x_3$$

SVM

A test-point $\phi^{\scriptscriptstyle T}(X)$ in this higher dimension may be classified based on the following :

$$d(\varphi^{T}(X)) = \sum_{i=1}^{l} y_{i} \alpha_{i}(\varphi_{i}(X), \varphi^{T}(X)) + b_{o}$$

$$(X) = \varphi_{i}(X), \varphi^{T}(X)$$

$$(Kernel Function)$$

SVM

Typically SVM is used for data with only two classes.

It may however be used for multiple classes in the following manner :

Feature Space Conversion

Feature space conversion somewhat improves the "separability" of the data so that the classifier has a relatively easier task.

This effectively improves the accuracy of the classifier.

Feature Space Conversion

A simple example demonstrating feature space conversion :

$$f(m_1, m_2, r) = C \frac{m_1 m_2}{r^2}$$
$$(m_1, m_2, r) \longrightarrow (x, y, z) \longrightarrow (\ln m_1, \ln m_2, \ln r)$$

$$\ln f(m_1, m_2, r) = \ln C + \ln m_1 + \ln m_2 + \ln r$$

In feature conversion, certain irrelevant features may also be discarded. For example, if in the above case, the colours of the masses m_1 , & m_2 were also provided, it could have been discarded.

Cheng et al.'s Approach

The motivation behind using frequent patterns along with single items is the fact that patterns (up to a certain size) have a much higher "information content".

This is demonstrated in the following :

The "aim" therefore is to maximize the information content of the feature space.

The mapping between the information gain and the support of the data set is clearly visible in the following :

Feature Selection

An algorithm (MMRFS) is presented for feature selection.

A few terms that are made use of in the algorithm are defined below.

Relevance: "A relevance measure S is a function mapping a pattern α to a real value such that $S(\alpha)$ is the relevance w.r.t. the class label."

Redundancy : "A redundancy measure R is a function mapping two patterns α and β to a real value such that $R(\alpha, \beta)$ is the redundancy between them."

Gain: $g(\alpha) = S(\alpha) - \max_{\beta \in F_s} R(\alpha, \beta)$

Experimental Setup

- Datasets from the UCI Machine Learning Repository were made use of.
- Closed frequent patterns were obtained using the FPClose [2] algorithm.
- The MMRFS algorithm was used for feature selection.
- The classifiers used were LIBSVM [3] and C4.5 in Weka [4].
- 10-fold cross-validation was performed to determine the best parameters.

Feature Selection Algorithm

Algorithm 1 Feature Selection Algorithm MMRFS

Input: Frequent patterns \mathcal{F} , Coverage threshold δ , Relevance S, Redundancy ROutput: A selected pattern set \mathcal{F}_s

1: Let α be the most relevant pattern;

2: $F_s = \{\alpha\};$

3: while (true)

- Find a pattern β such that the gain g(β) is the maximum among the set of patterns in F - F_g;
- 5: If β can correctly cover at least one instance

6: $\mathcal{F}_s = \mathcal{F}_s \cup \{\beta\};$ 7: $\mathcal{F} = \mathcal{F} - \{\beta\};$

- $\mathcal{F} = \mathcal{F} \{\beta\};$
- If all instances are covered δ times or F = φ
 break:

10: return \mathcal{F}_s

Experimental Results

Data	Single Feature			Freq. Pattern	
	Item_All	$Item_FS$	Item_RBF	Pat_All	Pat_FS
anneal	99.78	99.78	99.11	99.33	99.67
austral	85.01	85.50	85.01	81.79	91.14
auto	83.25	84.21	78.80	74.97	90.79
breast	97.46	97.46	96.98	96.83	97.78
cleve	84.81	84.81	85.80	78.55	95.04
diabetes	74.41	74.41	74.55	77.73	78.31
glass	75.19	75.19	74.78	79.91	81.32
heart	84.81	84.81	84.07	82.22	88.15
hepatic	84.50	89.04	85.83	81.29	96.83
horse	83.70	84.79	82.36	82.35	92.39
iono	93.15	94.30	92.61	89.17	95.44
iris	94.00	96.00	94.00	95.33	96.00
labor	89.99	91.67	91.67	94.99	95.00
lymph	81.00	81.62	84.29	83.67	96.67
pima	74.56	74.56	76.15	76.43	77.16
sonar	82.71	86.55	82.71	84.60	90.86
vehicle	70.43	72.93	72.14	73.33	76.34
wine	98.33	99.44	98.33	98.30	100
200	97.09	97.09	95.09	94.18	99.00

Accuracy in % obtained using LIBSVM

Experimental Results

Dataset	Single	Features	Frequent Patterns		
	Item_All	$Item_FS$	Pat_All	Pat_FS	
anneal	98.33	98.33	97.22	98.44	
austral	84.53	84.53	84.21	88.24	
auto	71.70	77.63	71.14	78.77	
breast	95.56	95.56	95.40	96.35	
cleve	80.87	80.87	80.84	91.42	
diabetes	77.02	77.02	76.00	76.58	
glass	75.24	75.24	76.62	79.89	
heart	81.85	81.85	80.00	86.30	
hepatic	78.79	85.21	80.71	93.04	
horse	83.71	83.71	84.50	87.77	
iono	92.30	92.30	92.89	94.87	
iris	94.00	94.00	93.33	93.33	
labor	86.67	86.67	95.00	91.67	
lymph	76.95	77.62	74.90	83.67	
pima	75.86	75.86	76.28	76.72	
sonar	80.83	81.19	83.67	83.67	
vehicle	70.70	71.49	74.24	73.06	
wine	95.52	93.82	96.63	99.44	
zoo	91.18	91.18	95.09	97.09	

Accuracy in % obtained using C4.5

Experimental Results (scalability)

nin_sup	#Patterns	Time (s)	SVM (%)	C4.5 (%)
1	5,147,030	N/A	N/A	N/A
3000	3,246	200.406	79.86	77.08
3500	2,078	103.797	80.21	77.28
4000	1,429	61.047	79.57	77.32
4500	962	35.235	79.51	77.42

Letter Recognition Data

Experimental Results (scalability)

min_sup	#Patterns	Time (s)	SVM (%)	C4.5 (%)
1	N/A	N/A	N/A	N/A
2000	68,967	44.703	92.52	97.59
2200	28,358	19.938	91.68	97.84
2500	6,837	2.906	91.68	97.62
2800	1,031	0.469	91.84	97.37
3000	136	0.063	91.90	97.06

Chess Data

min_sup	#Patterns	Time (s)	SVM (%)	C4.5 (%)
1	9,468,109	N/A	N/A	N/A
80	26,576	176.485	92.40	88.35
100	15,316	90.406	92.19	87.29
150	5,408	23.610	91.53	88.80
200	2,481	8.234	91.22	87.32

Waveform Data

Critique

- The justification provided for each step in the approach adopted is commendable.
- The experiments have been conducted comprehensively.
- The method introduced is more of a formalization of methods already in use, rather than an entirely new approach.
- Certain parameters and terms used have not been explained nor provided with adequate citations.

References

- 1. H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative feature pattern analysis for effective classification. (submitted)
- 2. Y.Yang and J. O. Pedersen. A comparative study on feature selection in text categorization. In *Proc. of ICML,* pages 412-420, 1997.
- 3. C.-C. Chang and C.-J. Lin. *LIBSVM: a library of support vector machines,* 2001. Software available at <u>http://www.csei.nyu.edu.tw/~cjlin/libsvm</u>.
- 4. I. H. Witten and E. Frank. *Data Mining; Practical machine learning tools and techniques.* Morgan Kaufmann, 2nd edition, 2005.

Thank you!