Mining for Contrasting Sets (STUCCO)

Camilo Arango Department of Computing Science University of Alberta

What is Contrast set mining

- Finding differences among groups
- Example questions:
 - Health: Which symptoms differentiate similar diseases?
 - Marketing: What are the differences between customers that spend less money and those who spend more in a particular kind of item?
 - Analysis of census data: What is the difference between people holding Ph.D. degrees and people holding Bachelor degrees?

Outline

- Definition of the problem
- STUCCO algorithm
 - Basic idea
 - Controlling error
 - Filtering of results
 - Evaluation
- Conclusions

 How do prospective students for different departments differ from each other?

Data Model

• Data is a set of k-dimensional vectors where each component can take a finite number of discrete values.

- Age = {<20, 20-25, 25-30, >30}
- Sex = {M, F}
- Born in us = {yes, no}
- SAT-M > 700 = {yes, no}
- SAT-V > 700 = {yes, no}
- Admitted = {yes, no}

Data Model

• The vectors are organized into mutually exclusive groups

	Age	Sex	Born in US	SAT-M >700	SAT-V >700	Admit
CS	<20	F	yes	yes	no	yes
	20-25	М	no	no	yes	no
	<20	F	no	yes	yes	yes
Biology	20-25	М	yes	yes	no	yes
	<20	F	yes	no	yes	no
	<20	F	no	yes	no	yes
Engineering	<20	М	yes	no	yes	yes
	20-25	М	yes	no	no	no
	25-30	F	yes	yes	no	yes
	<20	F	yes	no	yes	yes

- Differences among groups are expressed as contrastsets
- A **contrast-set** is a conjunction of attribute-value pairs.

Examples

Admitted = no

Sex = $F \land Born in US = no$

Age = $20-25 \land \text{Admitted} = \text{yes} \land \text{SAT-V} > 700 = \text{no}$

Support of Contrasts sets

• Support of a contrast set in group G: % of examples in G where the contrast set is true.

	Age	Sex	Born in US	SAT-M >700	SAT-V >700	Admit	
CS	<20	F	yes	yes	no	yes	sup (Sex = F ∧ Born in US = no CS) = 1 / 3 = 33%
[20-25	М	no	no	yes	no	
	<20	F	no	yes	yes	yes	
Biology	20-25	М	yes	yes	no	yes	sup (Sex = F \land Born in US = no Biology) = 2 / 3 = 66%
	<20	F	no	no	yes	no	
	<20	F	no	yes	no	yes	
Engineering	<20	М	yes	no	yes	yes	sup (Sex = F \land Born in US = no Biology) = 0 / 3 = 0%
	20-25	М	yes	no	no	no	
	25-30	F	yes	yes	no	yes	
	<20	F	yes	no	yes	yes	

Problem of finding Contrast Sets

- We want to find the contrasts sets that make one group different than another.
- In other words, we want to find the contrast-sets whose support differs *meaningfully* across groups. This contrast-sets are called <u>deviations</u>.

How can we determine this?

Defining deviations

- A deviation is a contrast set that is significant and large
- A contrast-set for which at least two groups *differ* in their support is called **Significant**.
- A contrast-set for which the *maximum difference* between supports is greater than a parameter *mindev*, is called **Large**.

Example

For the contrast set c1: "admitted = yes \land age 20-25" and **mindev** = 5%

support (admitted = yes \land age 20-25 | CS) = 11% support (admitted = yes \land age 20-25 | Bio) = 15%

support (admitted = yes \land age 20-25 | Eng) = 18%

Deciding if a contrast set is large is easy:

max difference = 18% - 11% = 7%With *mindev* = 5%, *c1* is **large**

To decide if a contrast set is significant, we use an **statistical test**

- An algorithm to find contrasts sets
- Stands for "Search and Testing for Understandable Consistent Contrast".
- Presented by Stephen D. Bay and Michael J. Pazzani in SIGKDD 1999

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be <u>pruned</u>.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be <u>pruned</u>.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display more specific deviations only if they are <u>surprising</u>.

- Age = {<20, 20-25, 25-30, >30}
- Admitted = {yes, no}

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

- A contrast set for which at least two groups *differ* in their support is called **Significant**.
- Perform an statistical test (chi-square) for the contrast-set:
 - Null hypothesis: "The support for the contrast-set is the same across all groups"
 - Compute the χ^2 statistic
 - Check the value of the chi-square distribution
 - It must be less than a threshold α . (typically, α =0.05)

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

 To compute the χ² statistic we build a 2 x c contingency table, where c is the number of groups:

c1: "admitted = yes < age 20-25"

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})}{E_{ij}}$$

$$E_{ij} = \frac{\sum_{i=1}^{2} O_{ij} \sum_{j=1}^{c} O_{ij}}{N}$$

 $O \rightarrow Observed \ values$

 $E \rightarrow Expected values$

 $N \rightarrow total number of observations$

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

• How to choose α ?

- In chi-square tests typically, α=0.05
- α is the max probability of falsely rejecting the null hypothesis (*Type I error*).
- That means that if we perform 1000 tests, an average of 50 Type I errors will be made!

• Solution:

Decrease the value of α progressively for each level in the tree

$$\alpha_{l} = \min\left(\frac{\frac{\alpha}{2^{l}}}{|C_{l}|}, \alpha_{l-1}\right)$$

 $|C_l| \rightarrow Number of candidates in level l of the tree$

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be pruned.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

• Pruning strategies:

- 1.**Minimum deviation size**: If the support for a node is smaller than *mindev* for all groups.
- 2.**Expected Cell Frequencies**: If the expected of a node is too small, the χ^2 test is not valid. It will also be invalid for the children.
- 3.**Chi-Square Bounds**: It is possible to calculate an upper bound to the χ^2 statistic for all children of a node. If it is not high enough to pass the α test for that level, the node can be pruned.

- Uses a breadth first, level by level approach.
- For each level
 - Scan database and count support for each group.
 - Determine if each node is <u>significant</u> and <u>large</u>.
 - Determine if each the node should be *pruned*.
- Display all first order deviations.
- Display other deviations only if they are <u>surprising</u>.

Filtering Deviations

 A contrast set is considered to be *surprising* if their support is different from what is expected.

P (Age > 30 | Bio) = 0.09

- P (Admitted = true | Bio) = 0.21
- Assuming independency, then we expect :

 P_e (Age > 30 \land Admitted = true | Bio) = 0.09 * 0.21

- =0.02 Surprise!
- If the actual value is different, the result is surprising

 P_e (Age = 30+ \land Admitted = true | Bio) = 0.1

Evaluation

- Using the Adult census data taken from the UCI database.
 - "What are the differences between people with Ph.D. and Bachelor degrees? (mindev = 1%, α = 0.05)
 - STUCCO found 10000 deviations. Most of them not surprising, so reduced to 164.

	Observed $\%$		Expected %			
Contrast-Set	Ph.D.	Bach.	Ph.D.	Bach.	χ^2	р
workclass = State-gov	21.0	5.4			225.1	6.9e-51
occupation = sales	2.7	15.8			74.9	4.8e-18
hour per week > 60	8.4	3.2			43.4	4.4e-11
native country $=$ U.S.	80.5	89.5			45.9	1.3e-11
native country = Canada	1.9	0.5			18.6	1.6e-5
native country $=$ India	1.6	0.5			15.2	9.5e-5
salary > 50K	72.6	41.3			220.2	8.3e-50
sex = male \land						
salary $> 50K$	61.8	34.8	58.8	28.5	173.6	1.2e-39
occupation = prof-specialty \land						
$sex = female \land$						
salary $> 50K$	7.6	2.6	10.7	3.5	48.2	3.8e-12

• Apriori found 75000 rules in the dataset.

Conclusion

- Contrast-set mining studies techniques for finding differences across several contrasting groups.
- The STUCCO algorithm
 - Uses statistical hypothesis testing to find significant differences.
 - Provides control over false positives.
 - Implements several pruning techniques.
 - Summarization of results.

Questions?

xkcd.com

[1] Stephen D. Bay, Michael J. Pazzani. *Detecting Change in Categorical Data: Mining Contrast Sets*. In Proc. 1999 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

[2] Amit Satsangi, Osmar R. Zaïane. *Contrasting the Contrast Sets: An Alternative Approach*. Database Engineering and Applications Symposium, 2007

[3] Stephen D. Bay, Michael J. Pazzani. *Detecting Group Differences: Mining Contrast Sets*. Data Mining and Knowledge Discovery. Volume 5, Number 3 / July, 2001. Pages 213-246. Springer Netherlands.