Using Contrast Sets in Time Series Data
I Paper by Jessica Lin and Eamonn Keogh

Presentation by Dave Chodos
CMPUT 695

I Motivation

« Understand differences between groups
o |dentify attributes that differ significantly
* Time Series Data
e Heart monitor, stock market
» Usual techniques don't work; use key patterns
e Can convert multimedia data into time series

» Can find key differences in images, video

I Contrast Sets

Value ($)

Time Series

Time (days)

T={7,3,11,1,4,9,3,8,2}, m=9

C, ={11,1,4,9}, n=4

Value ($)

Comparing Time Series

Di&'f(Qq_C) = A\‘Il':i(q; — ¢)2

Dist(Q,C) = 12.04

Value ($)

Time (days)

IS-Diff(T; S, n) = most different

subset from T of size n

TS-Diff(Q,C,3) = {11,1,4}

Time (days)

C=TS-Dif(T,S,n)
D=TS-Diff(S,T,n)
CS={C,D}

CS={{11,1,4},{11,4,9}}, n=3

I Finding Contrast Sets

contrast set of size n

* Brute Force Approach
 For each subset f of size nin T, compare it with
each subset s in S to find the closest match
* This will take O(m?) time, which is unacceptable
for large databases

I Given sets S and T of size m, want to find

Brute Force

For each t in T
For each s in S
If dist(t, s) < nearest_neighbour_dist then
nearest_neighbour_dist = dist(t,s)
End if
End for
If nearest_neighbour_dist > best_set_dist
best_set_dist = nearest_neighbour_dist
best_set = t
End if
End for
Return best set, best_set_dist

I Heuristic: TS-Diff Discovery

« Some subsets can be ruled out as candidates
I for the contrast set

» Can stop checking t if its nearest neighbour in S
IS closer than the current contrast set distance

 If current contrast set distance is 5, then f can
be ruled out if dist(t,s) = 3

* \WWant to rule out as many subsets as possible,
and do so quickly

Ordering T, items

* |deally, the furthest item in T is checked first
I — All other subsets t may be ruled out
* |deally, for each subset ¢, the closest item in S

Is checked first, so that t is ruled out quickly
- Only one item in S is checked

» Use ordering heuristics Outer and Inner to try
and achieve this ideal ordering

TS-Diff Discovery

For each t in T ordered by Outer
For each s in S ordered by Inner
If dist(t, s) < best_set_dist then
Break out of loop
Else 1f dist(t, s) < nearest_neighbour_dist then
nearest_neighbour_dist = dist(t,s)
End if
End for
If nearest_neighbour_dist > best_set_dist
best_set_dist = nearest_neighbour_dist
best_set = t
End if
End for
Return best set, best_set_dist

I Magic heuristic

and S so that:

— Item in T which is furthest from any item in S is
placed firstin T

- Foreach item tin T, the closest elementto fin S
Is placed firstin S

* This results in O(m) runtime, as each item in
T is only checked against one item in S

I * |deally, Outer and Inner heuristics will order T

I Perverse Heuristic

* In worst case, Outer and Inner heuristics will

order items in T and S so that:

- Items in T are ordered in ascending order w.r.t. their
nearest neighbour in S

- Foreach item tin T, the item in S which is closest
to tis placed lastin S

* This ordering results in every item in T being
checked against every item in S
 Thus, we have O(m?) runtime = Brute Force

Heuristic Summary

Magic — Best ordering
Approximation of best ordering

Randomized ordering

Perverse — Worst ordering

I Group SAX

» Coming close to ideal ordering will achieve
dramatic speedup
» Approximation of ideal ordering requires

discretization of time series
- Use Symbolic Aggregate ApproXimation (SAX)

 SAX approximates a time series of length m
with w coefficients

» Coefficients are converted to one of a symbols

* Thus, have a string of characters of length w

I Approximation of Outer

» Want to find subsets of T which are notin S
* Turn all subsets of length n from S, T into words

* Put words into hashtables Hash S, Hash T

» Scan Hash S for empty buckets b
- If b is empty in Hash_S but not Hash T, then we
have found a subset of T thatis notin S
* These subsets are checked first by outer loop
— Likely to have large distance value
— WIll result in many subsets being ruled out

* All other subsets are checked in random order

Word: jacf

Value ($)

Time (days)

aaab aaaa aaaa 1 aaaa
jacf aaab 1 aaab | --- aaab 1

: = . L = f
AAnm « jacf . 3 Jacf. « jac . 3

nnnm | 1 nnnm | 2 nnnm | ---
nnnn | --- nnnn | --- nnnn | ---

T (Sorted) Hash T Hash_S Hash T

I Approximation of Inner

that the item can be ruled out quickly
» Compute hash key for SAX word
* Check items in Hash_S with same hash key
* Other items in S visited in random order

I * Want to compare tto a similar item in S, so

I Evaluation — Power Usage

* Analyzed German vs. ltalian daily power use
I * Time window was 4 weeks

240

I German
1 - ' | b 'ﬁ '.l f | A\ Il‘.l. i Ir'I| II" k‘/ | 'ﬂ'u f r.I| |'h'
200 __I l|| III" III |I I|'|, | I'. | 1 II]', Il) | Ill 'I II' | I | II.' II III|| II IIl'l I| I.-I || |II| II| IIII |I lll

'IIIIII"'Iu1 III'I||'I|IIIIII| '.IIII |
160 | II| II Il | T i | ||| | i III A |'I || || III ||I II' ||| | i . ||| |-II II |'.I f | | II { IIl

120u | \ | A MMV o

— L‘.""_.

. f
80 [talian —>
Week-1 Week-2 Week-3 Week-4

* Due to August lull in hot Italian summer

I Evaluation - Petroglyphs

* Analyzed two sets of rock paintings
I » Converted images into time series

* Considered orientation, rotation
— added mirror, circular shifts to database

* Were able to identify key difference among
100,000 images at two sites

Performance

» Compared algorithm with
brute force

 Used random walk data
sets of lengths 100,000
and 200,000

 Measured number of
times distance function
was called

times faster than BF

- : S i
= ! - :
a 1 _i - I
E - ' :
i o Iy
0 o) -
| . - ‘
.'-_ ™ "
\ el
L I.:.
"
n Enae-For
JULEr
o] i\

. Algorithm almost 7,000 "

I Future Work

- multidimensional time series
- streaming data
- other distance measures
 Combine TS-Diff(T,S,n) and TS-Diff(S,T,n)

- Reduce repeated calculations

I » Authors suggest extending algorithm to:

Questions?

