
Using Contrast Sets in Time Series Data
Paper by Jessica Lin and Eamonn Keogh

Presentation by Dave Chodos
CMPUT 695

Motivation

● Contrast Sets
● Understand differences between groups
● Identify attributes that differ significantly

● Time Series Data
● Heart monitor, stock market
● Usual techniques don't work; use key patterns
● Can convert multimedia data into time series

● Can find key differences in images, video

Time Series

T={7,3,11,1,4,9,3,8,2}, m=9

C
3,6

={11,1,4,9}, n=4

Comparing Time Series

Q

C

Dist(Q,C) = 12.04

TS-Diff(T, S, n) = most different
 subset from T of size n

TS-Diff(Q,C,3) = {11,1,4}

C=TS-Diff(T,S,n)
D=TS-Diff(S,T,n)
CS={C,D}

CS={{11,1,4},{11,4,9}}, n=3

Finding Contrast Sets

● Given sets S and T of size m, want to find
contrast set of size n

● Brute Force Approach
● For each subset t of size n in T, compare it with

each subset s in S to find the closest match
● This will take O(m2) time, which is unacceptable

for large databases

Brute Force
For each t in T

For each s in S
If dist(t, s) < nearest_neighbour_dist then

nearest_neighbour_dist = dist(t,s)
End if

End for
If nearest_neighbour_dist > best_set_dist

best_set_dist = nearest_neighbour_dist
best_set = t

End if
End for
Return best set, best_set_dist

Heuristic: TS-Diff Discovery
● Some subsets can be ruled out as candidates

for the contrast set
● Can stop checking t if its nearest neighbour in S

is closer than the current contrast set distance
● If current contrast set distance is 5, then t can

be ruled out if dist(t,s) = 3
● Want to rule out as many subsets as possible,

and do so quickly

Ordering T, items
● Ideally, the furthest item in T is checked first

– All other subsets t may be ruled out
● Ideally, for each subset t, the closest item in S

is checked first, so that t is ruled out quickly
– Only one item in S is checked

● Use ordering heuristics Outer and Inner to try
and achieve this ideal ordering

TS-Diff Discovery
For each t in T ordered by Outer

For each s in S ordered by Inner
If dist(t, s) < best_set_dist then

Break out of loop
Else if dist(t, s) < nearest_neighbour_dist then

nearest_neighbour_dist = dist(t,s)
End if

End for
If nearest_neighbour_dist > best_set_dist

best_set_dist = nearest_neighbour_dist
best_set = t

End if
End for
Return best set, best_set_dist

Magic heuristic

● Ideally, Outer and Inner heuristics will order T
and S so that:
– Item in T which is furthest from any item in S is

placed first in T
– For each item t in T, the closest element to t in S

is placed first in S
● This results in O(m) runtime, as each item in

T is only checked against one item in S

Perverse Heuristic
● In worst case, Outer and Inner heuristics will

order items in T and S so that:
– Items in T are ordered in ascending order w.r.t. their

nearest neighbour in S
– For each item t in T, the item in S which is closest

to t is placed last in S
● This ordering results in every item in T being

checked against every item in S
● Thus, we have O(m2) runtime = Brute Force

Heuristic Summary

O(m) Magic – Best ordering

 Approximation of best ordering

 Randomized ordering

O(m2) Perverse – Worst ordering

Group SAX
● Coming close to ideal ordering will achieve

dramatic speedup
● Approximation of ideal ordering requires

discretization of time series
– Use Symbolic Aggregate ApproXimation (SAX)

● SAX approximates a time series of length m
with w coefficients

● Coefficients are converted to one of α symbols
● Thus, have a string of characters of length w

Approximation of Outer
● Want to find subsets of T which are not in S
● Turn all subsets of length n from S, T into words
● Put words into hashtables Hash_S, Hash_T
● Scan Hash_S for empty buckets b

– If b is empty in Hash_S but not Hash_T, then we
have found a subset of T that is not in S

● These subsets are checked first by outer loop
– Likely to have large distance value
– Will result in many subsets being ruled out

● All other subsets are checked in random order

Word: jacf

aaaa ---
aaab 1

jacf 3

nnnm 1
nnnn ---

aaaa 1
aaab ---

jacf ---

nnnm 2
nnnn ---

Hash_T Hash_S

...
...

...
...

aaaa ---
aaab 1

jacf 3

nnnm ---
nnnn ---

Hash_T

...
...

T

T (Sorted)

aaab
jacf

nnnm

...
...

Approximation of Inner

● Want to compare t to a similar item in S, so
that the item can be ruled out quickly

● Compute hash key for SAX word
● Check items in Hash_S with same hash key
● Other items in S visited in random order

Evaluation – Power Usage

● Analyzed German vs. Italian daily power use
● Time window was 4 weeks

● Due to August lull in hot Italian summer

Evaluation - Petroglyphs
● Analyzed two sets of rock paintings
● Converted images into time series
● Considered orientation, rotation

– added mirror, circular shifts to database
● Were able to identify key difference among

100,000 images at two sites

Performance

● Compared algorithm with
brute force

● Used random walk data
sets of lengths 100,000
and 200,000

● Measured number of
times distance function
was called

● Algorithm almost 7,000
times faster than BF

Future Work

● Authors suggest extending algorithm to:
– multidimensional time series
– streaming data
– other distance measures

● Combine TS-Diff(T,S,n) and TS-Diff(S,T,n)
– Reduce repeated calculations

Questions?

