Outline

@ Introduction
® Item Eﬁ,urperation, Row Enumeration or ?
@® Theoretical Framework

@ Data Structure

@ Algorithm — GLIMIT

® Complexity.. ok %
@® Evaluation $i R

*Flofian Verhein, Sanjay Chawla
IEEE ICDM 2006

< Transpose the original dataset:

« For each row, x;, contains transactions
containingi.x,={ttid:te T Ai €t}

<+ Here, we call x; an itemvector.

l.e, it represent an item in the space
spanned by the transactions.

<+ FIM is the most time consuming part in ARM.

< Traditionally, we use item enumeration type
algorithms to mine the dataset for FIM.

< Multiple passes of the original dataset.
< Elements:
T: transaction set, each transactiont € T

| Traditional | Transposed | R
|: a set that contains all the items.t | 7,:1,2.5 1%, |
. , . A $0:1,2,3,4 | 2:%1,%2.13 -
FIM: anitemseti T ando (i) = minSup i 3+t
4 tz, t;; b
5:%1,ta

| label] corresponding itemsets
a (1.5
b 2y
31, 113, (L4, 123
c 341, 1123}, {124},
1,34}, 1234}, 11,23.4]
d 4.5
I 151.12.5)
r 12}
u 41.12.4]
Anitemset!|” | can also be
represented as an itemvector.
xp={ttid:teTAI t}
Exmaple: { 2,4 }

X, ={t,t;}isatg.
X, = {t,tt; }is atf. So:
Xpn =X N X, ={tt}isatg.

Note: O (x,) = x|

+ Three key points:

(1) An item or itemset can be represented
by a vector.

(2) Create vectors that represent itemsets
by performing operations on the item

-vector. (e.g. intersect itemvectors)

(3) We can evaluate a measure by using a
certain function on the itemvectors. (e.g.
Size of an itemvector can be considered
as the support of the itemset.)

> These three points can be abstracted to
two functions and one operator.(g(),f(),0)

< Preliminary illustration

« For simplicity, we instantiate g(), f() and o for
traditional FIM. Bottom-up scanning in transposed
dataset row by row. (minSup = 1)

« Check x5 and x,, {4} and {5} are frequent.
* Xpg 5= Xg N X5 = {t5}

+ {3}Is frequent | Traditional | Transposed |
7, :1.2.5 1.5

% X35, = X3 N Xg = fy:1.2.3.4 | 2:t1.to,ts

*Xeay=Xs N X ={t} | ¢,:2,45 |3:t

« {3,4,5} is not frequent. 41,13

<+ Continue with x, 0 :ty. 13

+ A single pass generate all frequent itemsets.

« After processing n itemvectors corresponding to
items in {1,2,3...n}, any itemset L {1,2,3...n} will
have been generated.

« Transposed format and itemvector allow all these
to work.

<+ Problem:
<+ Space:

<+ |[temvectors take up significant space (as many as
frequent itemsets, worst: 2/ -1)

< Time:
<+ Recomputation. (Not linear, actually exponential)

+ Example: x5 5, is created, when X, , 3 4y is needed,
we want to use X , 3 to compute it rather than
recalculate x; N x, N X3 N X,

< Challenge:
+ use little space while avoid re-computation.

+ GLIMIT (Geometrically Inspired Linear
ltemset Mining In the Transpose.)

< Using time roughly linear to the number of
itemset.

<+ At worst using n'+ L/2 , n’ denote the
number of 1-frequent itemset, L is the length
of the longest frequent itemset.

+~Based on these facts and the geometric
inspiration of itemvector.

< Linear space and linear time.
<+ One pass without candidate generation.
<+ Based on itemvector framework.

Sounds pretty nice

Outline

< Introduction

< |ltem Enumeration, Row Enumeration or ?
< Theoretical Framework

<« Data Structure

< Algorithm — GLIMIT

+ Complexity

< Evaluation

A ltem enumeration. Can prune effectively
Based on anti-monotonic property.

Apriori-like, effective When |T|>>||
A Row enumeration.
Intersect transactions (row based).

Need to keep transposed table for
counting purpose.

Effective When |T|<<|l|

<« GLIMIT
+ Hard to define what it really belongs to?
<+ Need to keep the transposed table

< Intersect itemvectors in the transposed table
rather than intersect transections.

< Search through the itemset space but scan
original dataset column-wise. Transpose
has never been considered by previous item
enumeration approach.

< Conclusion: it is still an item enumeration
method.

Outline

< Introduction

< Item Enumeration, Row Enumeration or ?
<+ Theoretical Framework

< Data Structure

« Algorithm — GLIMIT

<+ Complexity

< Evaluation

< Previously, we consider itemvectors as sets
of transactions and perform intersection
among them to generate longer itemsets.
Also, cardinality function are used to
evaluate the support of an itemvector.

<+ Now, abstract these operations.

« (Recall: x, : itemvector for I’ or, set of
transactions that contain ')

< Definition 2 - is an operator on the
transformed itemvectors so that

Yeur=YreYr=YreYr

« Suppose X is the space spanned by all x;
<+ We have:

+ Definition 1 g : X — Y is a transformation
on the original itemvector to a different

representation Yy = g(XI’) in a new space Y . < Definition 3 f: Y — R is a measure on
itemsets, evaluated on transformed

< Th tput is still it tor. . :
€ output is still an itemvector itemvectors. We write m, = f(y,).

+ g(): bit-wise transformation

- Definition: < o Intersection N, bitwise AND

- Suppose I' = {iy, ..., ig}: «f():||orsum()

- Interestingness(I’) =f(g(x;;)°g(xi;)°.--°g(Xiq)) + Example:

. So for an interesting measure, we need to find = ltemvectors: x; = {ty, B}, X, = {ty, ts}
the appropriate g(),°, f(). Yy =9(xq) =110, y, = g(x,) = 101

. For this presentation, we specifically consider Y1°Y2=Yr 0 Y, =100 =y 5
support of an itemset, so the calculation can be +f=sum(y) =1=y," Y,

+ 0 ({1,2}) =1
< Actually dot product

represented using the above definitions as:

< Obviously, different definitions of g(),°, ().
applies to different measures.

+ Definition: (not needed for support)

+F : Rk = R is a measure on an itemset I’
that supports any composition of measures

(provided by f(-)) on any number of subsets

of I That is, M, = F(m|,1, my, ml,k), where,
my. = f(y;,), and I, I,)...I" are k arbitrary
subsets of I'.

+ Interestingness (I') = F(m;, m., m,,)

«If k =1, F() = f(). Support computation
function

<« Example: (part of spatial colocation mining)
The minPl of an itemset ' = {1, ..., q} is
minPI(I") = mini{ o (I') / o ({i}) }. Suppose
mp= o (). g(), °, f() are defined the same
as before.

Outline

< Introduction

< [tem Enumeration, Row Enumeration or ?
< Theoretical Framework

< Data Structure

< Algorithm — GLIMIT

<« Complexity

< Evaluation

« Structures for GLIMIT:

< Prefix tree:

@® Store itemset I as s sequence <iy, is....... g
The order of the item is fixed. (an itemvector)
Each node of the tree represent a sequence.
(A prefixNode)

@® itemset = itemvector = sequence = prefixNode

@® PrefixNode tuple = (parent, depth, m(M), item

@® How to recover a sequence?

+ Fringe contains maximal itemsets. (for ARM)

Outline

< Introduction

< Item Enumeration, Row Enumeration or ?
< Theoretical Framework

< Data Structure

<+ Algorithm — GLIMIT

<+ Complexity

< Evaluation

GLIMIT

< Depth first search and bottom up scanning.

< 5 facts to help save space and avoid re-
computation (time).

< Fact1:

+ Incrementally apply rule y,,; =y, ° Y; i.e, we only
have to keep a single itemvector |n memory when
generating a child of a node.

<+ Note, for root, we have to keep all the single
itemvectors which represent the root’s child.

Fact2: we only expand nodes which have one
or more siblings below it. i.e. we check < i,
Iy, s By B, B> Only if siblings <'i,, iy, ..., i, >

“datl]
and < i, i, ..., I, ii,> are in the prefix tree. Here,
K> |

Fact3: we use the depth first procedure, when
a PrefixNode p is created, then all PrefixNodes
corresponding to the subsets of p’s itemset will
already have been generated.

<« Fact4: If PrefixNode (depth>1) have no
children to expand, its itemvector will be
abandoned. (Note apply for node with
depth>1)

<« Factb: when a topmost child of node p is
created or checked, delete the itemvector of
p. (Note: apply for node with depth>1)

« Fact6: If we create a PrefixNode p on the
top- most branch, suppose p stands for

<iy, Iy, ..., I,>, then itemvectors for the any
single item in p can be deleted.

Outline

< Introduction

< Item Enumeration, Row Enumeration or ?
< Theoretical Framework

< Data Structure

« Algorithm — GLIMIT

<+ Complexity

< Evaluation

<« Time: roughly linear in the number of
frequent itemsets.(Avoid recomputation)
Building and mining happen simultaneously.

«~Space: we only consider itemvectors
needed to save in memory.

<+ Need to keep all itemvectors for single items
until reaching the top-most.

+ Need to keep the itemvector for a node if not
all children of it has been checked.

< Now consider the worst case:

+ Suppose all itemsets are fregent.

< n itemvectors for single items. n/2 for the
nodes on the path. (They are not fully expanded.)

<« So, worstcaseisn+ n/2 -1

< A closer bound:

Let n be the number of items, and n’” < n be
the number of frequent items. Let L < n’ be
the size of the largest itemset. GLIMIT uses
at most N + L/2 — 1 itemvectors of
space.

<+ Much better in practical situation.
< Bottom up
< Depth first from left to right

Outline

< Introduction

< Item Enumeration, Row Enumeration or ?
< Theoretical Framework

< Data Structure

« Algorithm — GLIMIT

<+ Complexity

<+ Evaluation

< Two datasets with 100,000 transactions each
+ Contain 870 and 942 items respectively.

@
&

umber of frequent item set

<+ When MinSup > a certain threshold. GLIMIT
outperforms FPGrowth.

<+ Reason:
For FPGrowth:
@®Build the tree and then conditional pattern
® Mine conditional FP-tree iteratively.
(Search by following the links in the tree.)

@It pays off if the minsupport is very small.
But if minsupport is big, then space and time
are wasted.)

< For GLIMIT:
@® Use time and space as needed.

@®One pass without generation, linear time
and space.

@® No resource-consuming mining procedures

@®Beaten by FP Growth when MinSup is small
because too many bitwise operation
decrease the overall efficiency.

. i B — VA e —h Y 4 — Y A Y A e - A

Last but not least...

<+ GLIMIT is somewhat trivial in this paper.
<+ What is the main purpose?

% Itemvectors in transaction space

% A framework for operating on itemvectors

(Great flexibility in selecting measures and
transformations on original data)

% New class of algorithms. Glimit is an instantiation
of the concepts.

% Future work: Geometric inspired measures and
transformatlons for itemset mlnlngr

Nov 29th

