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FIM is the most time consuming part in ARM.
Traditionally, we use item enumeration type 
algorithms to mine the dataset for FIM.
Multiple passes of the original dataset.
Elements: 
T: transaction set, each transaction t ∈ T
I: a set that contains all the items. t �I
FIM:  an itemset i � T andσ(i) ≥ minSup

Transpose the original dataset:
For each row, xi, contains transactions 
containing i. xi = { t.tid : t ∈ T ∧ i ∈ t }.
Here, we call xi  an itemvector. 
i.e, it represent an item in the space 
spanned by the transactions. 



An itemset I’ � I can also be 
represented as an itemvector.
xI’ = { t.tid : t ∈ T ∧ I’ � t }
Exmaple: { 2,4 }
x4 = { t2,t3 } is at g.
x2 = {t1,t2,t3 } is at f.  So:
x{2,4} = x2 ∩ x4 = { t2,t3 } is at g.

Note: σ(xI’) = |xI’|

Three key points:
(1) An item or itemset can be represented    

by a vector.
(2) Create vectors that represent itemsets

by performing operations on the item 
-vector. (e.g. intersect itemvectors)

(3) We can evaluate a measure by using a    
certain function on the itemvectors. (e.g.    
Size of an itemvector can be considered    
as the support of the itemset.)

※ These three points can be abstracted to    
two functions  and one operator.(g(),f(),o)

Preliminary illustration
For simplicity, we instantiate g(), f() and o for 
traditional FIM. Bottom-up scanning in transposed 
dataset row by row. (minSup = 1)
Check x5 and x4, {4} and {5} are frequent.
x{4,5} = x4 ∩ x5 = {t3}
{3} is frequent
x{3,5} = x3 ∩ x5 = �
x{3,4} = x3 ∩ x4 = {t2}
{3,4,5} is not frequent.
Continue with x2

A single pass generate all frequent itemsets.
After processing n itemvectors corresponding to 
items in {1,2,3…n}, any itemset L� {1,2,3…n} will 
have been generated.
Transposed format and itemvector allow all these 
to work.



Problem:
Space:
Itemvectors take up significant space (as many as 
frequent itemsets, worst: 2|I| −1)
Time:
Recomputation. (Not linear, actually exponential)
Example: x{1,2,3} is created, when x{1,2,3,4} is needed, 
we want to use x{1,2,3} to compute it rather than 
recalculate x1 ∩ x2 ∩ x3 ∩ x4.

Challenge: 
use little space while avoid re-computation.

GLIMIT (Geometrically Inspired Linear 
Itemset Mining In the Transpose.)
Using time roughly linear to the number of 
itemset.
At worst using n’+�L/2�, n’ denote the 
number of 1-frequent itemset, L is the length 
of the longest frequent itemset.
Based on these facts and the geometric 
inspiration of itemvector.

Linear space and linear time.
One pass without candidate generation.
Based on itemvector framework.
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▲Item enumeration. Can prune effectively    
Based on anti-monotonic property.
Apriori-like, effective When |T|>>|I|

▲Row enumeration. 
Intersect transactions (row based).
Need to keep transposed table for   
counting purpose.
Effective When |T|<<|I|

GLIMIT
Hard to define what it really belongs to?
Need to keep the transposed table
Intersect itemvectors in the transposed table 
rather than intersect transections.
Search through the itemset space but scan 
original dataset column-wise. Transpose 
has never been considered by previous item 
enumeration approach.
Conclusion: it is still an item enumeration 
method.
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Previously, we consider itemvectors as sets 
of transactions and perform intersection 
among them to generate longer itemsets. 
Also, cardinality function are used to 
evaluate the support of an itemvector.
Now, abstract these operations.
(Recall: xI’ : itemvector for I’, or, set of 
transactions that contain I’)



Suppose X is the space spanned by all xI’

We have:
Definition 1 g : X → Y is a transformation 
on the original itemvector to a different 
representation yI’ = g(xI’) in a new space Y .
The output is still an itemvector.

Definition 2 ◦ is an operator on the 
transformed itemvectors so that

yI’∪I” = yI’ ◦ yI” = yI” ◦ yI’

Definition 3 f : Y → R is a measure on 
itemsets, evaluated on transformed 
itemvectors. We write mI’ = f(yI’).

Definition: 
Suppose I’ = {i1, ..., iq}:
Interestingness(I’) =f(g(xi1 )◦g(xi2 )◦...◦g(xiq ))
So for an interesting measure, we need to find 
the appropriate g(),◦, f().
For this presentation, we specifically consider 
support of an itemset, so the calculation can be 
represented using the above definitions as:

g( ): bit-wise transformation
◦ : Intersection ∩, bitwise AND
f( ) : | | or sum( )
Example:
Itemvectors: x1 = {t1, t2}, x2 = {t1, t3}
y1 = g(x1) = 110, y2 = g(x2) = 101 
y1 ◦ y2 = y1 ∩ y2 = 100 = y{1,2} 
f = sum(y{1,2}) = 1 = y1 · y2
σ({1,2}) = 1
Actually dot product



Obviously, different definitions of g(),◦, f(). 
applies to different measures.
Definition: (not needed for support)
F : Rk → R is a measure on an itemset I’
that supports any composition of measures
(provided by f(·)) on any number of subsets
of I’. That is, MI’ = F(mI’1, mI’2….. mI’k), where, 
mI’i = f(yI’i), and I1’, I2’…Ik’ are k arbitrary 
subsets of I’. 
Interestingness (I’) = F(mI’1 mI’2….. mI’k)

If k =1, F( ) = f( ).  Support computation 
function
Example: (part of spatial colocation mining)
The minPI of an itemset I’ = {1, ..., q} is 
minPI(I’) = mini{σ(I’) /σ({i}) }. Suppose 
mI’ = σ(I’). g( ), ◦ , f() are defined the same 
as before.
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Structures for GLIMIT:
Prefix tree:

● Store itemset I’ as s sequence <i1, i2…….ik>,
The order of the item is fixed. (an itemvector) 
Each node of the tree represent a sequence.
(A prefixNode)

● itemset = itemvector = sequence = prefixNode
● PrefixNode tuple = (parent, depth, m(M), item)  
● How to recover a sequence?



Fringe contains maximal itemsets. (for ARM)
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GLIMIT

Depth first search and bottom up scanning.
5 facts to help save space and avoid re-
computation (time).

Fact1:
Incrementally apply rule yI’∪{i} = yI’ ◦ yi. i.e, we only 
have to keep a single itemvector in memory when 
generating a child of a node.
Note, for root, we have to keep all the single 
itemvectors which represent the root’s child.

Fact2: we only expand nodes which have one 
or more siblings below it. i.e. we check < ia, 
ib, ..., ii, ij , ik> only if siblings < ia, ib, ..., ii, ij >  
and < ia, ib, ..., ii, ik> are in the prefix tree. Here,  
k > j

Fact3: we use the depth first procedure, when 
a PrefixNode p is created, then all PrefixNodes
corresponding to the subsets of p’s itemset will 
already have been generated.



Fact4: If PrefixNode (depth>1) have no 
children to expand, its itemvector will be 
abandoned. (Note apply for node with 
depth>1)
Fact5: when a topmost child of node p is 
created or checked, delete the itemvector of 
p. (Note: apply for node with depth>1)
Fact6: If we create a PrefixNode p on the 
top- most branch, suppose p stands for
<i1, i2, ..., ik>, then itemvectors for the any 
single item in p can be deleted.
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Time: roughly linear in the number of 
frequent itemsets.(Avoid recomputation) 
Building and mining happen simultaneously.
Space: we only consider itemvectors
needed to save in memory.
Need to keep all itemvectors for single items 
until reaching the top-most.
Need to keep the itemvector for a node if not 
all children of it has been checked.
Now consider the worst case:

Suppose all itemsets are freqent.
n itemvectors for single items. �n/2�for the 
nodes on the path. (They are not fully expanded.)
So, worst case is n + �n/2� − 1

A closer bound:
Let n be the number of items, and n’ ≤ n be 
the number of frequent items. Let L ≤ n’ be 
the size of the largest itemset. GLIMIT uses 
at most n’ + �L/2� − 1 itemvectors of 
space.
Much better in practical situation.
Bottom up 
Depth first from left to right
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Two datasets with 100,000 transactions each.
Contain 870 and 942 items respectively.

When MinSup > a certain threshold. GLIMIT 
outperforms FPGrowth.
Reason: 
For FPGrowth: 

●Build the tree and then conditional pattern
●Mine conditional FP-tree iteratively. 

(Search by following the links in the tree.) 
●It pays off if the minsupport is very small. 

But if minsupport is big, then space and time 
are wasted. )

For GLIMIT:
●Use time and space as needed.
●One pass without generation, linear time    

and space.
●No resource-consuming mining procedures
●Beaten by FP Growth when MinSup is small 

because too many bitwise operation 
decrease the overall efficiency.



Last but not least…
GLIMIT is somewhat trivial in this paper.
What is the main purpose?

★ Itemvectors in transaction space
★ A framework for operating on itemvectors

( Great flexibility in selecting measures and  
transformations on original data )

★ New class of algorithms. Glimit is an instantiation 
of the concepts.

★ Future work: Geometric inspired measures  and 
transformations for itemset mining.

Thanks
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