Geometrically Inspired Itemset Mining\*

\*Florian Verhein, Sanjay Chawla IEEE ICDM 2006

## Outline

Introduction

- Item Enumeration, Row Enumeration or ?
- Theoretical Framework
- Data Structure
- Algorithm GLIMIT
- Complexity
- Evaluation

FIM is the most time consuming part in ARM.

- Traditionally, we use item enumeration type algorithms to mine the dataset for FIM.
- Multiple passes of the original dataset.
- Elements:
  - T: transaction set, each transaction t  $\in$  T
  - I: a set that contains all the items. t
  - FIM: an itemset i T and  $\sigma$  (i)  $\geq$  minSup

- Transpose the original dataset:
- ✤ For each row, x<sub>i</sub>, contains transactions containing i. x<sub>i</sub> = { t.tid : t ∈ T ∧ i ∈ t }.
- $\boldsymbol{\ast}$  Here, we call  $\boldsymbol{x}_i$  an **itemvector.** 
  - i.e, it represent an item in the space spanned by the transactions.

| Traditional                                                          | Transposed                                                                                 |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $ \begin{array}{c} t_1:1,2,5\\ t_2:1,2,3,4\\ t_3:2,4,5 \end{array} $ | $ \begin{array}{c} 1:t_1,t_2\\ 2:t_1,t_2,t_3\\ 3:t_2\\ 4:t_2,t_3\\ 5:t_1,t_2 \end{array} $ |





| label                       | corresponding itemsets                                                  |  |
|-----------------------------|-------------------------------------------------------------------------|--|
| a                           | {1,5}                                                                   |  |
| b                           | $\{1\},\{1,2\}$                                                         |  |
| с                           | $ \{3\}, \{1,3\}, \{1,4\}, \{2,3\}, \\ \{3,4\}, \{1,2,3\}, \{1,2,4\}, $ |  |
| d                           | $\{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}$<br>$\{4,5\}$                        |  |
| e                           | {5},{2,5}                                                               |  |
| f                           | {2}                                                                     |  |
| g                           | {4}, {2,4}                                                              |  |
| An itemset l' I can also be |                                                                         |  |
| repres                      | sented as an itemvector.                                                |  |
| $x_{P} = \{$                | t.tid : $t \in T \land I'  t$ }                                         |  |

Exmaple: { 2,4 }

 $x_4 = \{t_2, t_3\}$  is at g.

Note:  $\sigma(x_{i'}) = |x_{i'}|$ 

 $x_2 = \{t_1, t_2, t_3\}$  is at f. So:

 $x_{\{2,4\}} = x_2 \cap x_4 = \{t_2, t_3\}$  is at g.

- Three key points:
  - (1) An item or itemset can be represented by a vector.
  - (2) Create vectors that represent itemsets by performing operations on the item -vector. (e.g. intersect itemvectors)
  - (3) We can evaluate a measure by using a certain function on the itemvectors. (e.g. Size of an itemvector can be considered as the support of the itemset.)
  - \* These three points can be abstracted to two functions and one operator.(g(),f(),o)

- Preliminary illustration
- For simplicity, we instantiate g(), f() and o for traditional FIM. Bottom-up scanning in transposed dataset row by row. (minSup = 1)
- $\clubsuit$  Check  $x_5$  and  $x_4,$  {4} and {5} are frequent.
- $x_{\{4,5\}} = x_4 \cap x_5 = \{t_3\}$
- {3} is frequent
- $\mathbf{x}_{\{3,5\}} = \mathbf{x}_3 \ \cap \ \mathbf{x}_5 =$
- $* \mathbf{x}_{\{3,4\}} = \mathbf{x}_3 \cap \mathbf{x}_4 = \{\mathbf{t}_2\}$
- {3,4,5} is not frequent
- Continue with x<sub>2</sub>

| 50        |                                                   |                                                                                                        |
|-----------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 5.        | Traditional                                       | Transposed                                                                                             |
| }<br>ent. | $t_1: 1, 2, 5 \\ t_2: 1, 2, 3, 4 \\ t_3: 2, 4, 5$ | $\begin{array}{c}1:t_{1},t_{2}\\2:t_{1},t_{2},t_{3}\\3:t_{2}\\4:t_{2},t_{3}\\5:t_{1},t_{3}\end{array}$ |
|           |                                                   |                                                                                                        |

- A single pass generate all frequent itemsets.
- After processing n itemvectors corresponding to items in {1,2,3...n}, any itemset L {1,2,3...n} will have been generated.
- Transposed format and itemvector allow all these to work.

#### Problem:

- Space:
- Itemvectors take up significant space (as many as frequent itemsets, worst: 2<sup>|||</sup>-1)
- ✤ Time:
- Recomputation. (Not linear, actually exponential)
- ✤ Example: x<sub>{1,2,3</sub>}</sub> is created, when x<sub>{1,2,3,4</sub>}</sub> is needed, we want to use x<sub>{1,2,3</sub></sub> to compute it rather than recalculate x<sub>1</sub> ∩ x<sub>2</sub> ∩ x<sub>3</sub> ∩ x<sub>4</sub>.
- Challenge:
- use little space while avoid re-computation.

- GLIMIT (Geometrically Inspired Linear Itemset Mining In the Transpose.)
- Using time roughly linear to the number of itemset.
- At worst using n'+ L/2 , n' denote the number of 1-frequent itemset, L is the length of the longest frequent itemset.
- Based on these facts and the geometric inspiration of itemvector.

#### Linear space and linear time.

- One pass without candidate generation.
- Based on itemvector framework.

# Sounds pretty nice!

#### Outline

- Introduction
- Item Enumeration, Row Enumeration or ?
- Theoretical Framework
- Data Structure
- Algorithm GLIMIT
- Complexity
- Evaluation

Item enumeration. Can prune effectively Based on anti-monotonic property. Apriori-like, effective When |T|>>|I|

#### ▲ Row enumeration.

Intersect transactions (row based). Need to keep transposed table for counting purpose. Effective When |T|<<|I|

#### GLIMIT

- Hard to define what it really belongs to?
- Need to keep the transposed table
- Intersect itemvectors in the transposed table rather than intersect transections.
- Search through the itemset space but scan original dataset column-wise. Transpose has never been considered by previous item enumeration approach.
- Conclusion: it is still an item enumeration method.

## Outline

- Introduction
- Item Enumeration, Row Enumeration or ?
- Theoretical Framework
- Data Structure
- Algorithm GLIMIT
- Complexity
- Evaluation

- Previously, we consider itemvectors as sets of transactions and perform intersection among them to generate longer itemsets. Also, cardinality function are used to evaluate the support of an itemvector.
- Now, abstract these operations.
- (Recall: x<sub>l'</sub> : itemvector for l', or, set of transactions that contain l')

- Suppose X is the space spanned by all x<sub>i</sub>
   We have:
- ◆ Definition 1 g : X → Y is a transformation on the original itemvector to a different representation y<sub>I</sub> = g(x<sub>I</sub>) in a new space Y.
- The output is still an itemvector.

Definition 2 • is an operator on the transformed itemvectors so that

 $\mathbf{y}_{\mathbf{l}'\cup\mathbf{l}''}=\mathbf{y}_{\mathbf{l}'}\circ\mathbf{y}_{\mathbf{l}''}=\mathbf{y}_{\mathbf{l}''}\circ\mathbf{y}_{\mathbf{l}'}$ 

◆ Definition 3 f : Y → R is a measure on itemsets, evaluated on transformed itemvectors. We write  $m_{l'} = f(y_{l'})$ .

- Definition:
- Suppose I' = {i<sub>1</sub>, ..., i<sub>q</sub>}:
- Interestingness(I') =f(g(x<sub>i1</sub>) °g(x<sub>i2</sub>) °... °g(x<sub>iq</sub>))
- So for an interesting measure, we need to find the appropriate g(), o, f().
- For this presentation, we specifically consider support of an itemset, so the calculation can be represented using the above definitions as:

- Obviously, different definitions of g(), °, f(). applies to different measures.
- Definition: (not needed for support)
- F: R<sup>k</sup> → R is a measure on an itemset I' that supports any composition of measures (provided by f(·)) on any number of subsets of I'. That is, M<sub>l</sub> = F(m<sub>l'1</sub>, m<sub>l'2</sub>, m<sub>l'k</sub>), where, m<sub>l'i</sub> = f(y<sub>l'i</sub>), and I<sub>1</sub>', I<sub>2</sub>'...I<sub>k</sub>' are k arbitrary subsets of I'.
- Interestingness (I') =  $F(m_{I'_1} m_{I'_2....} m_{I'_k})$

- If k =1, F( ) = f( ). Support computation
   function
- Example: (part of spatial colocation mining)
   The minPl of an itemset l' = {1, ..., q} is
   minPl(l') = min<sub>i</sub>{ σ (l') / σ ({i}) }. Suppose
   m<sub>i</sub> = σ (l'). g(), ∘, f() are defined the same as before.

## Outline

- Introduction
- Item Enumeration, Row Enumeration or ?
- Theoretical Framework
- ♦ Data Structure
- Algorithm GLIMIT
- Complexity
- Evaluation

#### Structures for GLIMIT:

- Prefix tree:
- Store itemset I' as s sequence <i<sub>1</sub>, i<sub>2</sub>.....i<sub>k</sub>>, The order of the item is fixed. (an itemvector) Each node of the tree represent a sequence. (A prefixNode)
- itemset = itemvector = sequence = prefixNode
- PrefixNode tuple = (parent, depth, m(M), item
- How to recover a sequence?



Fringe contains maximal itemsets. (for ARM)

## Outline

- Introduction
- Item Enumeration, Row Enumeration or ?
- Theoretical Framework
- Data Structure
- Algorithm GLIMIT
- Complexity
- Evaluation

## GLIMIT

- Depth first search and bottom up scanning.
- 5 facts to help save space and avoid recomputation (time).
- ♦ Fact1:
- ◆ Incrementally apply rule  $y_{i' \cup \{i\}} = y_{i'} \circ y_{i}$  i.e, we only have to keep a single itemvector in memory when generating a child of a node.
- Note, for root, we have to keep all the single itemvectors which represent the root's child.

- ◆ Fact2: we only expand nodes which have one or more siblings below it. i.e. we check < i<sub>a</sub>, i<sub>b</sub>, ..., i<sub>i</sub>, i<sub>j</sub>, i<sub>k</sub>> only if siblings < i<sub>a</sub>, i<sub>b</sub>, ..., i<sub>i</sub>, i<sub>j</sub> > and < i<sub>a</sub>, i<sub>b</sub>, ..., i<sub>i</sub>, i<sub>k</sub>> are in the prefix tree. Here, k > j
- Fact3: we use the depth first procedure, when a PrefixNode p is created, then all PrefixNodes corresponding to the subsets of p's itemset will already have been generated.

#### Fact4: If PrefixNode (depth>1) have no children to expand, its itemvector will be abandoned. (Note apply for node with depth>1)

- Fact5: when a topmost child of node p is created or checked, delete the itemvector of p. (Note: apply for node with depth>1)
- Fact6: If we create a PrefixNode p on the top-most branch, suppose p stands for

 $\langle i_1, i_2, ..., i_k \rangle$ , then itemvectors for the any single item in p can be deleted.







## Outline

- Introduction
- Item Enumeration, Row Enumeration or ?
- Theoretical Framework
- Data Structure
- Algorithm GLIMIT
- Complexity
- Evaluation

- Time: roughly linear in the number of frequent itemsets.(Avoid recomputation) Building and mining happen simultaneously.
- Space: we only consider itemvectors needed to save in memory.
- Need to keep all itemvectors for single items until reaching the top-most.
- Need to keep the itemvector for a node if not all children of it has been checked.
- Now consider the worst case:



- Suppose all itemsets are freqent.
- n itemvectors for single items. n/2 for the nodes on the path. (They are not fully expanded.)
- So, worst case is n + n/2 1

#### A closer bound:

- Let n be the number of items, and n'  $\leq$  n be the number of frequent items. Let L  $\leq$  n' be the size of the largest itemset. GLIMIT uses at most n' + L/2 - 1 itemvectors of space.
- Much better in practical situation.
- Bottom up
- Depth first from left to right

## Outline

- Introduction
- Item Enumeration, Row Enumeration or ?
- Theoretical Framework
- Data Structure
- Algorithm GLIMIT
- Complexity
- Evaluation

## Two datasets with 100,000 transactions each Contain 870 and 942 items respectively.



- When MinSup > a certain threshold. GLIMIT outperforms FPGrowth.
- ♦ Reason:
  - For FPGrowth:
- Build the tree and then conditional pattern
- Mine conditional FP-tree iteratively.
- (Search by following the links in the tree.)
- It pays off if the minsupport is very small.
   But if minsupport is big, then space and time are wasted.)

#### For GLIMIT:

- Use time and space as needed.
- One pass without generation, linear time and space.
- •No resource-consuming mining procedures
- Beaten by FP Growth when MinSup is small because too many bitwise operation decrease the overall efficiency.

## Last but not least...

- GLIMIT is somewhat trivial in this paper.
- What is the main purpose?
- ★ Itemvectors in transaction space
- ★ A framework for operating on itemvectors
  - ( Great flexibility in selecting measures and transformations on original data )
- ★ New class of algorithms. Glimit is an instantiation of the concepts.
- ★ Future work: Geometric inspired measures and transformations for itemset mining.

