
Geometrically Inspired Itemset
Mining*

*Florian Verhein, Sanjay Chawla
IEEE ICDM 2006

Outline
● Introduction
● Item Enumeration, Row Enumeration or ?
● Theoretical Framework
● Data Structure
● Algorithm – GLIMIT
● Complexity
● Evaluation

FIM is the most time consuming part in ARM.
Traditionally, we use item enumeration type
algorithms to mine the dataset for FIM.
Multiple passes of the original dataset.
Elements:
T: transaction set, each transaction t ∈ T
I: a set that contains all the items. t �I
FIM: an itemset i � T andσ(i) ≥ minSup

Transpose the original dataset:
For each row, xi, contains transactions
containing i. xi = { t.tid : t ∈ T ∧ i ∈ t }.
Here, we call xi an itemvector.
i.e, it represent an item in the space
spanned by the transactions.

An itemset I’ � I can also be
represented as an itemvector.
xI’ = { t.tid : t ∈ T ∧ I’ � t }
Exmaple: { 2,4 }
x4 = { t2,t3 } is at g.
x2 = {t1,t2,t3 } is at f. So:
x{2,4} = x2 ∩ x4 = { t2,t3 } is at g.

Note: σ(xI’) = |xI’|

Three key points:
(1) An item or itemset can be represented

by a vector.
(2) Create vectors that represent itemsets

by performing operations on the item
-vector. (e.g. intersect itemvectors)

(3) We can evaluate a measure by using a
certain function on the itemvectors. (e.g.
Size of an itemvector can be considered
as the support of the itemset.)

※ These three points can be abstracted to
two functions and one operator.(g(),f(),o)

Preliminary illustration
For simplicity, we instantiate g(), f() and o for
traditional FIM. Bottom-up scanning in transposed
dataset row by row. (minSup = 1)
Check x5 and x4, {4} and {5} are frequent.
x{4,5} = x4 ∩ x5 = {t3}
{3} is frequent
x{3,5} = x3 ∩ x5 = �
x{3,4} = x3 ∩ x4 = {t2}
{3,4,5} is not frequent.
Continue with x2

A single pass generate all frequent itemsets.
After processing n itemvectors corresponding to
items in {1,2,3…n}, any itemset L� {1,2,3…n} will
have been generated.
Transposed format and itemvector allow all these
to work.

Problem:
Space:
Itemvectors take up significant space (as many as
frequent itemsets, worst: 2|I| −1)
Time:
Recomputation. (Not linear, actually exponential)
Example: x{1,2,3} is created, when x{1,2,3,4} is needed,
we want to use x{1,2,3} to compute it rather than
recalculate x1 ∩ x2 ∩ x3 ∩ x4.

Challenge:
use little space while avoid re-computation.

GLIMIT (Geometrically Inspired Linear
Itemset Mining In the Transpose.)
Using time roughly linear to the number of
itemset.
At worst using n’+�L/2�, n’ denote the
number of 1-frequent itemset, L is the length
of the longest frequent itemset.
Based on these facts and the geometric
inspiration of itemvector.

Linear space and linear time.
One pass without candidate generation.
Based on itemvector framework.

Outline
Introduction
Item Enumeration, Row Enumeration or ?
Theoretical Framework
Data Structure
Algorithm – GLIMIT
Complexity
Evaluation

▲Item enumeration. Can prune effectively
Based on anti-monotonic property.
Apriori-like, effective When |T|>>|I|

▲Row enumeration.
Intersect transactions (row based).
Need to keep transposed table for
counting purpose.
Effective When |T|<<|I|

GLIMIT
Hard to define what it really belongs to?
Need to keep the transposed table
Intersect itemvectors in the transposed table
rather than intersect transections.
Search through the itemset space but scan
original dataset column-wise. Transpose
has never been considered by previous item
enumeration approach.
Conclusion: it is still an item enumeration
method.

Outline
Introduction
Item Enumeration, Row Enumeration or ?
Theoretical Framework
Data Structure
Algorithm – GLIMIT
Complexity
Evaluation

Previously, we consider itemvectors as sets
of transactions and perform intersection
among them to generate longer itemsets.
Also, cardinality function are used to
evaluate the support of an itemvector.
Now, abstract these operations.
(Recall: xI’ : itemvector for I’, or, set of
transactions that contain I’)

Suppose X is the space spanned by all xI’

We have:
Definition 1 g : X → Y is a transformation
on the original itemvector to a different
representation yI’ = g(xI’) in a new space Y .
The output is still an itemvector.

Definition 2 ◦ is an operator on the
transformed itemvectors so that

yI’∪I” = yI’ ◦ yI” = yI” ◦ yI’

Definition 3 f : Y → R is a measure on
itemsets, evaluated on transformed
itemvectors. We write mI’ = f(yI’).

Definition:
Suppose I’ = {i1, ..., iq}:
Interestingness(I’) =f(g(xi1)◦g(xi2)◦...◦g(xiq))
So for an interesting measure, we need to find
the appropriate g(),◦, f().
For this presentation, we specifically consider
support of an itemset, so the calculation can be
represented using the above definitions as:

g(): bit-wise transformation
◦ : Intersection ∩, bitwise AND
f() : | | or sum()
Example:
Itemvectors: x1 = {t1, t2}, x2 = {t1, t3}
y1 = g(x1) = 110, y2 = g(x2) = 101
y1 ◦ y2 = y1 ∩ y2 = 100 = y{1,2}
f = sum(y{1,2}) = 1 = y1 · y2
σ({1,2}) = 1
Actually dot product

Obviously, different definitions of g(),◦, f().
applies to different measures.
Definition: (not needed for support)
F : Rk → R is a measure on an itemset I’
that supports any composition of measures
(provided by f(·)) on any number of subsets
of I’. That is, MI’ = F(mI’1, mI’2….. mI’k), where,
mI’i = f(yI’i), and I1’, I2’…Ik’ are k arbitrary
subsets of I’.
Interestingness (I’) = F(mI’1 mI’2….. mI’k)

If k =1, F() = f(). Support computation
function
Example: (part of spatial colocation mining)
The minPI of an itemset I’ = {1, ..., q} is
minPI(I’) = mini{σ(I’) /σ({i}) }. Suppose
mI’ = σ(I’). g(), ◦ , f() are defined the same
as before.

Outline

Introduction
Item Enumeration, Row Enumeration or ?
Theoretical Framework
Data Structure
Algorithm – GLIMIT
Complexity
Evaluation

Structures for GLIMIT:
Prefix tree:

● Store itemset I’ as s sequence <i1, i2…….ik>,
The order of the item is fixed. (an itemvector)
Each node of the tree represent a sequence.
(A prefixNode)

● itemset = itemvector = sequence = prefixNode
● PrefixNode tuple = (parent, depth, m(M), item)
● How to recover a sequence?

Fringe contains maximal itemsets. (for ARM)

Outline

Introduction
Item Enumeration, Row Enumeration or ?
Theoretical Framework
Data Structure
Algorithm – GLIMIT
Complexity
Evaluation

GLIMIT

Depth first search and bottom up scanning.
5 facts to help save space and avoid re-
computation (time).

Fact1:
Incrementally apply rule yI’∪{i} = yI’ ◦ yi. i.e, we only
have to keep a single itemvector in memory when
generating a child of a node.
Note, for root, we have to keep all the single
itemvectors which represent the root’s child.

Fact2: we only expand nodes which have one
or more siblings below it. i.e. we check < ia,
ib, ..., ii, ij , ik> only if siblings < ia, ib, ..., ii, ij >
and < ia, ib, ..., ii, ik> are in the prefix tree. Here,
k > j

Fact3: we use the depth first procedure, when
a PrefixNode p is created, then all PrefixNodes
corresponding to the subsets of p’s itemset will
already have been generated.

Fact4: If PrefixNode (depth>1) have no
children to expand, its itemvector will be
abandoned. (Note apply for node with
depth>1)
Fact5: when a topmost child of node p is
created or checked, delete the itemvector of
p. (Note: apply for node with depth>1)
Fact6: If we create a PrefixNode p on the
top- most branch, suppose p stands for
<i1, i2, ..., ik>, then itemvectors for the any
single item in p can be deleted.

Outline

Introduction
Item Enumeration, Row Enumeration or ?
Theoretical Framework
Data Structure
Algorithm – GLIMIT
Complexity
Evaluation

Time: roughly linear in the number of
frequent itemsets.(Avoid recomputation)
Building and mining happen simultaneously.
Space: we only consider itemvectors
needed to save in memory.
Need to keep all itemvectors for single items
until reaching the top-most.
Need to keep the itemvector for a node if not
all children of it has been checked.
Now consider the worst case:

Suppose all itemsets are freqent.
n itemvectors for single items. �n/2�for the
nodes on the path. (They are not fully expanded.)
So, worst case is n + �n/2� − 1

A closer bound:
Let n be the number of items, and n’ ≤ n be
the number of frequent items. Let L ≤ n’ be
the size of the largest itemset. GLIMIT uses
at most n’ + �L/2� − 1 itemvectors of
space.
Much better in practical situation.
Bottom up
Depth first from left to right

Outline

Introduction
Item Enumeration, Row Enumeration or ?
Theoretical Framework
Data Structure
Algorithm – GLIMIT
Complexity
Evaluation

Two datasets with 100,000 transactions each.
Contain 870 and 942 items respectively.

When MinSup > a certain threshold. GLIMIT
outperforms FPGrowth.
Reason:
For FPGrowth:

●Build the tree and then conditional pattern
●Mine conditional FP-tree iteratively.

(Search by following the links in the tree.)
●It pays off if the minsupport is very small.

But if minsupport is big, then space and time
are wasted.)

For GLIMIT:
●Use time and space as needed.
●One pass without generation, linear time

and space.
●No resource-consuming mining procedures
●Beaten by FP Growth when MinSup is small

because too many bitwise operation
decrease the overall efficiency.

Last but not least…
GLIMIT is somewhat trivial in this paper.
What is the main purpose?

★ Itemvectors in transaction space
★ A framework for operating on itemvectors

(Great flexibility in selecting measures and
transformations on original data)

★ New class of algorithms. Glimit is an instantiation
of the concepts.

★ Future work: Geometric inspired measures and
transformations for itemset mining.

Thanks

Nov 29th

