CARPENTER Find Closed Patterns in Long Biological Datasets

Zhiyu Wang

Knowledge Discovery and Data Mining Dr. Osmar Zaiane Department of Computing Science University of Alberta

Biological Datasets

Gene expression

2

Biological Datasets

- Lung Cancer dataset (gene expression)
 - 181 samples
 - Each sample is described by 12533 genes

How can we find frequent patterns in such dataset? CARPENTER

Overview.....

- Motivation
- Problem statement
- Preliminaries
- CARPENTER algorithm
 - Transpose table
 - Row enumeration tree
 - Prune methods
- Performance
- Comments and Conclusion

Motivation

 Challenge to find the closed patterns from biological datasets that contains large number of columns with small number of rows

- For example,

10,000 - 100,000 columns with 100 - 1,000 rows

Problem Statement

• Discover all the frequent closed patterns with respect to user specified support threshold in such biological datasets efficiently.

Motivation

- Running time of most existing algorithms increases exponentially with increasing average row length
 - For example, in a dataset potential 2^i frequent itemsets, where i is the maximum row size.
 - What if i=12533?

 2^{12533} = 6.44×10³⁷⁷² (Hugh Search Space)

6

Preliminaries

- Features f_i
 - Items in the dataset
- Feature support set R(F')
 - Maximal set of rows contain a set of features F'

i	<u>r_i</u>
1	a, b, c
2	b, c, d
3	b, c, d
4	d

Features: $\{a, b, c, d\}$

Feature support set F'={b,c}, then R(F') ={1,2,3}

Preliminaries

- Row support set *F*(*R*')
 - Maximal set of features common to a set of rows
- Frequent closed pattern
 - There is no superset with the same support value R'

i	r_i
1	a, b, c
2	b, c, d
3	b, c, d
4	d

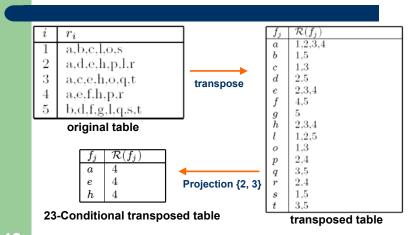
Row support set

 $R' = \{1,2\}, \text{ then } F(R') = \{b,c\}$

Frequent Closed patterns:

 $\{b,c\}, \{d\}, \{b,c,d\}.....$

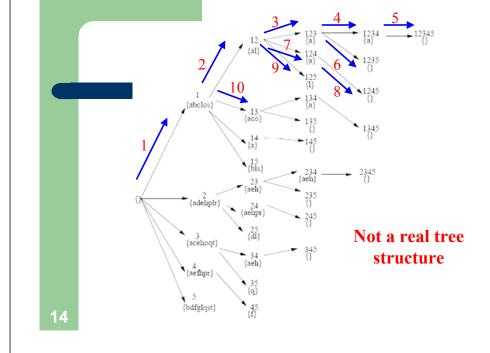
CARPENTER algorithm


- Proposed by A. K. H. Tung et.al, in ACM SIGKDD 2003.
- Main idea is to find frequent closed pattern in depth-first row-wise enumeration.
- Assumption: Assume dataset satisfies the condition: |R| << |F|

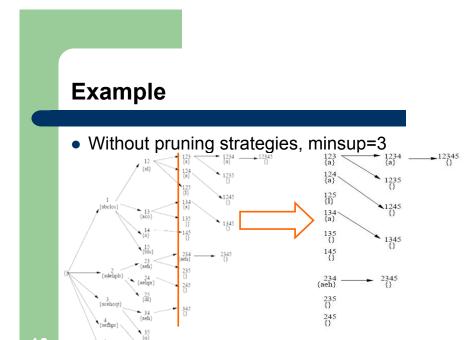
10

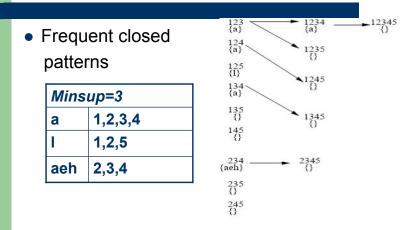
CARPENTER

- There are two phases:
 - 1. Transpose the dataset
 - 2. Row enumeration tree
 - Recursively search in conditional transposed table


Transpose table

Row enumeration tree


- Bottom-up row enumeration tree is based on conditional table.
- Each node is a conditional table.
 - 23-conditional table represents node 23.
 - $\begin{array}{c|cc} f_j & \mathcal{R}(f_j) \\ a & 4 \\ e & 4 \\ h & 4 \end{array}$

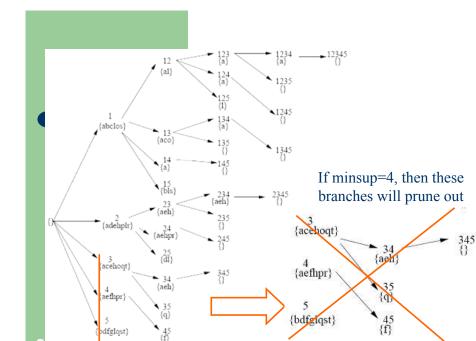

CARPENTER

• Recursively generation of conditional transposed table, performing a depth-first traversal of row-enumeration tree in order to find the frequent closed patterns.

3

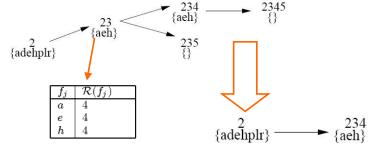
Example

345 {}

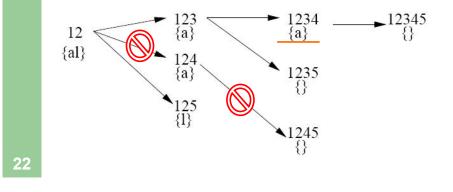

Prune methods

- It is obvious that complete traversal of row enumerations tree is not efficient.
- CARPENTER proposes 3 prune methods.

18


Prune method 1

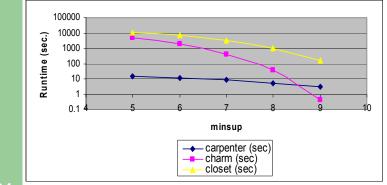
• Prune out the branch which can never generate closed pattern over minsup threshold


Prune method 2

 If rows appear in all tuples of the conditional transposed table, then such branch needs to prune and reconstruct

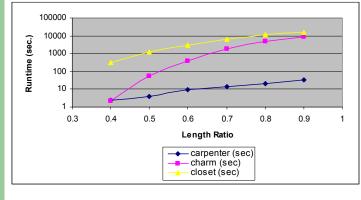
Prune method 3

• In each node, if corresponding support features is found, prune out the branch.

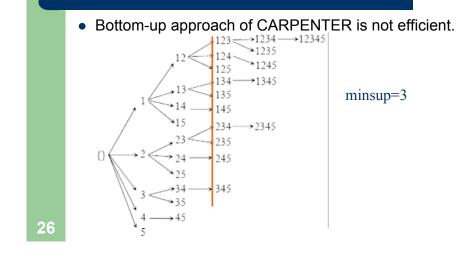


Performance

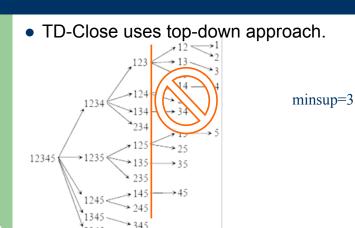
- CARPENTER is comparing with CHARM and CLOSET
 - Both CHARM and CLOSET use column enumeration approach
- Use lung cancer dataset
 - 181 samples with 12533 features
- Two parameters: minsup and length ratio
 - Length ratio is the percentage of column from original dataset


Performance

• Length ratio =60%, varying minsup



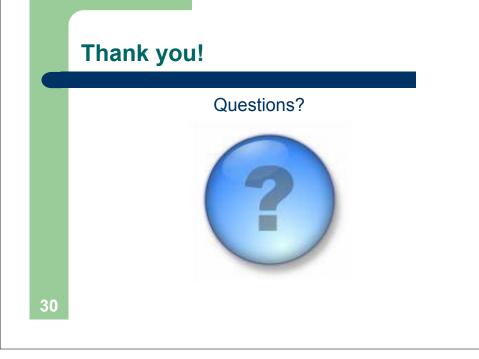
Performance



Comments

Comments

25



Conclusion

- CARPENTER is used to find the frequent closed pattern in biological dataset.
- CARPENTER uses row enumeration instead of column enumeration to overcome the high dimensionality of biological datasets.
- Not very efficient somehow

References

• A. K. H. Tung J. Yang F. Pan, G. Cong and M. J. Zaki. CARPENTER: Finding closed patterns in long biological datasets. In *In Proc. 2003 ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining*, 2003.

