Abstract

- Previous studies on periodicity search mainly consider finding full periodic patterns, where every point in time contributes to the periodicity.
- Now we will discuss efficient mining of partial periodic patterns, by exploring some interesting properties related to partial periodicity.

Outline

- Definitions related to partial periodicity
- Algorithms for mining partial periodicity in regard to both single and multiple periods
- Implementation of the max-subpattern tree
- Comparison of the performance of the algorithms above
- Conclusion
Related Concepts

- For each time instant i, let D_i be a set of features of dataset at that instant, the time series of features is represented as $S = D_1, D_2, \ldots, D_n$.
- Define a pattern $s = s_1 \ldots s_p$ as a nonempty sequence over $(2^L - \{\phi\}) \cup \{\ast\}$.
- $|s|$ denotes the length of s, called the period of s.
- A subpattern of a pattern $s = s_1 \ldots s_p$ is a pattern $s' = s'_1 \ldots s'_p$ such that s and s' have the same length, and $s'_i \subseteq s_i$ for every position i where $s'_i \neq \ast$.

Problem Definition

- The frequency_count and confidence of a pattern s in a time series $S = D_1, D_2, \ldots, D_n$ are defined as: $\text{frequency} _\text{count}(s) = \{|i| 0 \leq i < m, \text{and the string } s \text{ is true in } D_{|s|+1}, \ldots, D_{|s|+|s|}\}$.
- $\text{conf}(s) = \frac{\text{frequency} _\text{count}(s)}{m}$.
- m is the maximum number of periods of length $|s|$ contained in the time series (i.e., m is the positive integer such that $m | s | \leq n < (m+1) | s |$).

Outline

- Definitions related to partial periodicity.
- Algorithms for mining partial periodicity in regard to both single and multiple periods.
- Implementation of the max-subpattern tree.
- Comparison of the performance of the algorithms above.
- Conclusion.

Single-period Apriori Method

- Apriori Property: If one subset of an itemset is not frequent, then the itemset itself cannot be frequent. (This allows us to use frequent itemsets of size i as filters for candidate itemsets of size $i+1$).
- Property 3.1 [Apriori on Periodicity]: Each sub-pattern of a frequent pattern of period p is itself a frequent pattern of period p.

Single-period Apriori Method

- **Algorithm 3.1:** Find all partial periodic patterns for a given period p satisfying a given confidence threshold min_conf in time-series S, based on the Apriori property 3.1
 - Find F_1, the set of frequent 1-patterns of period p, by accumulating the frequency count for each 1-pattern in each whole period segment and selecting among them whose frequency count is no less than $\text{min}_\text{conf} \times m$, where m is the maximum number of periods
 - Repeat the same procedure as the first step to find all frequent i-patterns of period p, for i from 2 to p, until the candidate frequent i-pattern set is empty

Concepts of Single-period Max-subpattern Hit Set Method

- **Candidate frequent max-pattern** (C_{max}) is the maximal pattern which derive from F_1
 - For example: $C_{\text{max}} = a(b_1,b_2)cd^*$
- A subpattern of C_{max} is hit in a period segment S_i of S if it is the maximal subpattern of C_{max} in S_i; the hit set, H, of a time series S is the set of all hit subpatterns of C_{max} in S
- **Property 3.2** [The bound of hit set] The bound for the size of H is $|H| \leq \text{min}\{m,2^{|F_1|} - 1\}$, where m is the total number of periods in S

Single-period Max-subpattern Hit Set Method

- **Algorithm 3.2:** Find all the partial periodic patterns for a given period p in a time-series S, based on the max-subpattern hit-set, for a given min_conf threshold
 - Using Step 1 of Algorithm 3.1 to find F_1 of period p; form the candidate max-pattern C_{max} from F_1
 - Scan S once again; during the scan, for each period segment, do: If there is no max-subpattern, then add it into the hit set buffer; otherwise, add one to the count of the max-subpattern
 - After the scan, derive the frequent patterns from the hit set; how to implement this procedure will be discussed later

Comparison between the Algorithms 3.1 and 3.2

- **Scan**
 - Algorithm 3.1 requires to scan S up to p times in the worst case
 - Algorithm 3.2 only requires to scan it 2 times
- **Space**
 - Algorithm 3.1 need $2^{|F_1|} - 1$
 - Algorithm 3.2 need $\text{min}\{m,2^{|F_1|} - 1\}$
Question

- Can we extend the idea of Apriori to computing partial periodicity among different periods, that is, to use the patterns of small periods \(p \) as filters for candidate patterns of periods of the form \(kp \) for an integer \(k > 1 \)?
- Then the most direct way is to repeatedly apply the single-period algorithm for each period in the range.

Mining Partial Periodicity with Multiple Periods

- **Algorithm 3.3** [Looping over single period computation]: Find all the partial periodic patterns for a set of periods in a given range of interest, \(p_1, \ldots, p_k \), in the time-series \(S \), with the given min_conf threshold.
 - Apply algorithm 3.2 on each period \(P_i \) in the range of interest \((p_1, \ldots, p_k) \).
- This algorithm requires to scan the time-series \(S \) for \(2 \times k \) times, so when the number of periods \(k \) is large, we still need a good number of scans; how to improve it?

Outline

- Definitions related to partial periodicity
- Algorithms for mining partial periodicity in regard to both single and multiple periods
- Implementation of the max-subpattern tree
- Comparison of the performance of the algorithms above
- Conclusion
Implementation of The Max-Subpattern Tree

Build a Max-Subpattern Tree

- Take the candidate max-pattern C_{max} as the root node, where each subpattern of C_{max} with one non-* letter missing is a direct child node of the root.
- Each node has a "count" field (registers the number of hits of the current node), a parent link (nil for root), and a set of child links; each child link points a child and is associated with a corresponding missing letter.
- A node with only 2 non-* letters will not have any children.

Insertion in the Max-sp tree

- **Algorithm 4.1**: Insert a max-sp w found during the scan of S into the max-sp tree T
 - Starting from the root of the tree, find the corresponding node by checking the missing non-* letters in order.
 - If the node w is found, increase its count by 1. Otherwise, create a new node w (with count 1) and its missing ancestor nodes (only those on the path to w, with count 0), and insert them into the corresponding places of the tree.

For example 4.1

Derivation of Frequent Patterns from Max-sp tree

- **Algorithm 4.2**: The derivation of the frequent k-patterns for all k, given a max-sp tree T, by an Apriori-like technique.
 - The set of frequent 1-patterns F_1 is derived in the first scan of Algorithm 3.2.
 - After the second scan of Algorithm 3.2, we get the max-sp tree T. The set of frequent k-patterns ($k > 1$) is derived by for $i := 2$ to $|F_1|$ do {
 - Derive candidate patterns with L-length i from frequent patterns with L-length $(i-1)$.
 - Scan tree T to find frequent counts of these candidate patterns and eliminate the non-frequent ones.
 - Frequency count=count of node+counts of reachable ancestors.
 }
Outline

- Definitions related to partial periodicity
- Algorithms for mining partial periodicity in regard to both single and multiple periods
- Implementation of the max-subpattern tree
- Comparison of the performance of the algorithms above
- Conclusion

Performance of The Algorithms

- The running time of max-sp hit-set is almost constant for the length of the time series being 100,000 and the other being 500,000; Apriori is almost linear in the same conditions
- No matter for Mining partial periodicity with single or multiple periods, max-sp hit-set requires much less times of scans

Figure 2. Performance gain when MAX-PAT-LENGTH increases: \(p = 50, |F| = 12 \).
Conclusion

- By exploring several interesting properties Apriori property, the max-sp hit-set property, and shared mining of multiple periods, a set of partial periodicity mining algorithms are proposed. The study shows that the max-subpattern hit-set method offers excellent performance.