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Abstract 
Clustering algorithms are attractive for the task of class iden- 
tification in spatial databases. However, the application to 
large spatial databases rises the following requirements for 
clustering algorithms: minimal requirements of domain 
knowledge to determine the input parameters, discovery of 
clusters with arbitrary shape and good efficiency on large da- 
tabases. The well-known clustering algorithms offer no solu- 
tion to the combination of these requirements. In this paper, 
we present the new clustering algorithm DBSCAN relying on 
a density-based notion of clusters which is designed to dis- 
cover clusters of arbitrary shape. DBSCAN requires only one 
input parameter and supports the user in determining an ap- 
propriate value for it. We performed an experimental evalua- 
tion of the effectiveness and efficiency of DBSCAN using 
synthetic data and real data of the SEQUOIA 2000 bench- 
mark. The results of our experiments demonstrate that (1) 
DBSCAN is significantly more effective in discovering clus- 
ters of arbitrary shape than the well-known algorithm CLAR- 
ANS, and that (2) DBSCAN outperforms CLARANS by a 
factor of more than 100 in terms of efficiency. 
Keywords: Clustering Algorithms, Arbitrary Shape of Clus- 
ters, Efficiency on Large Spatial Databases, Handling Nlj4- 
2750ise. 

1. Introduction 
Numerous applications require the management of spatial 
data, i.e. data related to space. Spatial Database Systems 
(SDBS) (Gueting 1994) are database systems for the man- 
agement of spatial data. Increasingly large amounts of data 
are obtained from satellite images, X-ray crystallography or 
other automatic equipment. Therefore, automated know- 
ledge discovery becomes more and more important in spatial 
databases. 

Several tasks of knowledge discovery in databases (KDD) 
have been defined in the literature (Matheus, Chan & Pi- 
atetsky-Shapiro 1993). The task considered in this paper is 
class identi$cation, i.e. the grouping of the objects of a data- 
base into meaningful subclasses. In an earth observation da- 
tabase, e.g., we might want to discover classes of houses 
along some river. 

Clustering algorithms are attractive for the task of class 
identification. However, the application to large spatial data- 
bases rises the following requirements for clustering algo- 
rithms: 
(1) Minimal requirements of domain knowledge to deter- 

mine the input parameters, because appropriate values 
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are often not known in advance when dealing with large 
databases. 

(2) Discovery of clusters with arbitrary shape, because the 
shape of clusters in spatial databases may be spherical, 
drawn-out, linear, elongated etc. 

(3) Good efficiency on large databases, i.e. on databases of 
significantly more than just a few thousand objects. 

The well-known clustering algorithms offer no solution to 
the combination of these requirements. In this paper, we 
present the new clustering algorithm DBSCAN. It requires 
only one input parameter and supports the user in determin- 
ing an appropriate value for it. It discovers clusters of arbi- 
trary shape. Finally, DBSCAN is efficient even for large spa- 
tial databases. The rest of the paper is organized as follows. 
We discuss clustering algorithms in section 2 evaluating 
them according to the above requirements. In section 3, we 
present our notion of clusters which is based on the concept 
of density in the database. Section 4 introduces the algo- 
rithm DBSCAN which discovers such clusters in a spatial 
database. In section 5, we performed an experimental evalu- 
ation of the effectiveness and efficiency of DBSCAN using 
synthetic data and data of the SEQUOIA 2000 benchmark. 
Section 6 concludes with a summary and some directions for 
future research. 

2. Clustering Algorithms 
There are two basic types of clustering algorithms (Kaufman 
& Rousseeuw 1990): partitioning and hierarchical algo- 
rithms. Partitioning algorithms construct a partition of a da- 
tabase D of n objects into a set of k clusters. k is an input pa- 
rameter for these algorithms, i.e some domain knowledge is 
required which unfortunately is not available for many ap- 
plications. The partitioning algorithm typically starts with 
an initial partition of D and then uses an iterative control 
strategy to optimize an objective function. Each cluster is 
represented by the gravity center of the cluster (k-means al- 
gorithms) or by one of the objects of the cluster located near 
its center (k-medoid algorithms). Consequently, partitioning 
algorithms use a two-step procedure. First, determine k rep- 
resentatives minimizing the objective function. Second, as- 
sign each object to the cluster with its representative “clos- 
est” to the considered object. The second step implies that a 
partition is equivalent to a voronoi diagram and each cluster 
is contained in one of the voronoi cells. Thus, the shape of all 



clusters found by a partitioning algorithm is convex which is moderate values for n, but it is prohibitive for applications on 
very restrictive. large databases. 

Ng & Han (1994) explore partitioning algorithms for 
KDD in spatial databases. An algorithm called CLARANS 
(Clustering Large Applications based on RANdomized 
Search) is introduced which is an improved k-medoid meth- 
od. Compared to former k-medoid algorithms, CLARANS 
is more effective and more efficient. An experimental evalu- 
ation indicates that CLARANS runs efficiently on databases 
of thousands of objects. Ng & Han (1994) also discuss meth- 
ods to determine the “natural” number k,, of clusters in a 
database. They propose to run CLARANS once for each k 
from 2 to n. For each of the discovered clusterings the sil- 
houette coefficient (Kaufman & Rousseeuw 1990) is calcu- 
lated, and finally, the clustering with the maximum silhou- 
ette coefficient is chosen as the “natural” clustering. 
Unfortunately, the run time of this approach is prohibitive 
for large n, because it implies O(n) calls of CLARANS. 

Jain (1988) explores a density based approach to identify 
clusters in k-dimensional point sets. The data set is parti- 
tioned into a number of nonoverlapping cells and histograms 
are constructed. Cells with relatively high frequency counts 
of points are the potential cluster centers and the boundaries 
between clusters fall in the “valleys” of the histogram. This 
method has the capability of identifying clusters of any 
shape. However, the space and run-time requirements for 
storing and searching multidimensional histograms can be 
enormous. Even if the space and run-time requirements are 
optimized, the performance of such an approach crucially 
depends on the size of the cells. 

3. A Density Based Notion of Clusters 

CLARANS assumes that all objects to be clustered can re- 
side in main memory at the same time which does not hold 
for large databases. Furthermore, the run time of CLARANS 
is prohibitive on large databases. Therefore, Ester, Kriegel 
&Xu (1995) present several focusing techniques which ad- 
dress both of these problems by focusing the clustering pro- 
cess on the relevant parts of the database. First, the focus is 
small enough to be memory resident and second, the run 
time of CLARANS on the objects of the focus is significant- 
ly less than its run time on the whole database. 

When looking at the sample sets of points depicted in 
figure 1, we can easily and unambiguously detect clusters of 
points and noise points not belonging to any of those clus- 

Hierarchical algorithms create a hierarchical decomposi- 
tion of D. The hierarchical decomposition is represented by 
a dendrogram, a tree that iteratively splits D into smaller 
subsets until each subset consists of only one object. In such 
a hierarchy, each node of the tree represents a cluster of D. 
The dendrogram can either be created from the leaves up to 
the root (agglomerative approach) or from the root down to 
the leaves (divisive approach) by merging or dividing clus- 
ters at each step. In contrast to partitioning algorithms, hier- 
archical algorithms do not need k as an input. However, a ter- 
mination condition has to be defined indicating when the 
merge or division process should be terminated. One exam- 
ple of a termination condition in the agglomerative approach 
is the critical distance Dmin between all the clusters of Q. 

So far, the main problem with hierarchical clustering al- 

database 1 database 2 database 3 
figure 1: Sample databases 

The main reason why we recognize the clusters is that 
within each cluster we have a typical density of points which 
is considerably higher than outside of the cluster. Further- 
more, the density within the areas of noise is lower than the 
density in any of the clusters. 

gorithms has been the difficulty of deriving appropriate pa- 
rameters for the termination condition, e.g. a value of Dmin 
which is small enough to separate all “natural” clusters and, 
at the same time large enough such that no cluster is split into 
two parts. Recently, in the area of signal processing the hier- 
archical algorithm Ejcluster has been presented (Garcia, 
Fdez-Valdivia, Cortijo & Molina 1994) automatically deriv- 
ing a termination condition. Its key idea is that two points be- 
long to the same cluster if you can walk from the first point 
to the second one by a “sufficiently small” step. Ejcluster 
follows the divisive approach. It does not require any input 
of domain knowledge. Furthermore, experiments show that 
it is very effective in discovering non-convex clusters. How- 
ever, the computational cost of Ejcluster is O(n2) due to the 
distance calculation for each pair of points. This is accept- 
able for applications such as character recognition with 

In the following, we try to formalize this intuitive notion 
of “clusters” and “noise” in a database D of points of some 
k-dimensional space S. Note that both, our notion of clusters 
and our algorithm DBSCAN, apply as well to 2D or 3D Eu- 
clidean space as to some high dimensional feature space. 
The key idea is that for each point of a cluster the neighbor- 
hood of a given radius has to contain at least a minimum 
number of points, i.e. the density in the neighborhood has to 
exceed some threshold. The shape of a neighborhood is de- 
termined by the choice of a distance function for two points 
p and q, denoted by dist(p,q). For instance, when using the 
Manhattan distance in 2D space, the shape of the neighbor- 
hood is rectangular. Note, that our approach works with any 
distance function so that an appropriate function can be cho- 
sen for some given application. For the purpose of proper vi- 
sualization, all examples will be in 2D space using the Eu- 
clidean distance. 

Definition 1: (Eps-neighborhood of a point) The Eps- 
neighborhood of a point p, denoted by NEp,(p), is defined by 
NE &p) = {q E D I dist(p,q) I Eps }. 

R naive approach could require for each point in a cluster 
that there are at least a minimum number (MinPts) of points 
in an Eps-neighborhood of that point. However, this ap- 
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preach fails because there are two kinds of points in a clus- 
ter, points inside of the cluster (core points) and points on the 
border of the cluster (border points). In general, an Eps- 
neighborhood of a border point contains significantly less 
points than an Eps-neighborhood of a core point. Therefore, 
we would have to set the minimum number of points to a rel- 
atively low value in order to include all points belonging to 
the same cluster. This value, however, will not be character- 
istic for the respective cluster - particularly in the presence of 
noise. Therefore, we require that for every point p in a clus- 
ter C there is a point q in C so that p is inside of the Eps- 
neighborhood of q and N&q) contains at least MinPts 
points. This definition is elaborated in the following. 

Definition 2: (directly density-reachable) A point p is di- 
rectly density-reachable from a point q wrt. Eps, MinPts if 

1) P E NEp&O and 
2) IN&q)1 2 MinPts (core point condition). 

Obviously, directly density-reachable is symmetric for pairs 
of core points. In general, however, it is not symmetric if one 
core point and one border point are involved. Figure 2 shows 
the asymmetric case. 

(a) , P 

p: borderpolnt l . : q l ’ l 

q:cwcpoint # l O* . l m l 
. 

. . . 

’ . 

p directly dcnsity- 

q not directly density- 

. 
figure 2: core points and border points 

Definition 3: (density-reachable) A point p is density- 
reachable from a point q wrt. Eps and MinPts if there is a 
chain of points ~1, . . . . pn, pl = q, pn = p such that pi+1 is di- 
rectly density-reachable from pi. 

Density-reachability is a canonical extension of direct 
density-reachability. This relation is transitive, but it is not 
symmetric. Figure 3 depicts the relations of some sample 
points and, in particular, the asymmetric case. Although not 
symmetric in general, it is obvious that density-reachability 
is symmetric for core points. 

Two border points of the same cluster C are possibly not 
density reachable from each other because the core point 
condition might not hold for both of them. However, there 
must be a core point in C from which both border points of C 
are density-reachable. Therefore, we introduce the notion of 
density-connectivity which covers this relation of border 
points. 

Definition 4: (density-connected) A point p is density- 
connected to a point q wrt. Eps and MinPts if there is a point 
o such that both, p and q are density-reachable from o wrt. 
Eps and MinPts. 

Densitylconnectivity is a symmetric relation. For density 
reachable points, the relation of density-connectivity is also 
reflexive (c.f. figure 3). 

Now, we are able to define our density-based notion of a 
cluster. Intuitively, a cluster is defined to be a set of density- 
connected points which is maximal wrt. density-reachabili- 
ty. Noise will be defined relative to a given set of clusters. 
Noise is simply the set of points in D not belonging to any of 
its clusters. 

rcachablcffomq l . 
pcOZGtt.XW- 

each other by o 

figure 3: density-reachability and density-connectivity 

Definition 5: (cluster) Let D be a database of points. A 
cluster C wrt. Eps and MinPts is a non-empty subset of D 
satisfying the following conditions: 

1) V p, q: if p E C and q is density-reachable from p wrt. 
Eps and MinPts, then q E C. (Maximality) 

2) V p, q E C: p is density-connected to q wrt. EPS and 
MinPts. (Connectivity) 

Definition 6: (noise) Let Cl ,. . ., Ck be the clusters of the 
database D wrt. parameters Epsi and MinPtsi, i = 1, . . ., k. 
Then we define the noise as the set of points in the database 
D not belonging to any cluster Ci , i.e. noise = {p E D I V i: p 
P Cl}* 

Note that a cluster C wrt. Eps and MinPts contains at least 
MinPts points because of the following reasons. Since C 
contains at least one point p, p must be density-connected to 
itself via some point o (which may be equal to p). Thus, at 
least o has to satisfy the core point condition and, conse- 
quently, the Eps-Neighborhood of o contains at least MinPts 
points. 

The following lemmata are important for validating the 
correctness of our clustering algorithm. Intuitively, they 
state the following. Given the parameters Eps and MinPts, 
we can discover a cluster in a two-step approach. First, 
choose an arbitrary point from the database satisfying the 
core point condition as a seed. Second, retrieve all points 
that are density-reachable from the seed obtaining the clus- 
ter containing the seed. 

Lemma 1: Let p be a point in D and INEp,(p)l 2 MinPts. 
Then the set 0 = {o I o (Z D and o is density-reachable from 
p wrt. Eps and MinPts} is a cluster wrt. Eps and MinPts. 

It is not obvious that a cluster C wrt. Eps and MinPts is 
uniquely determined by any of its core points. However, 
each point in C is density-reachable from any of the core 
points of C and, therefore, a cluster C contains exactly the 
points which are density-reachable from an arbitrary core 
point of C. 

Lemma 2: Let C be a cluster wrt. Eps and MinPts and let 
p be any point in C with INEp,(p)l2 MinPts. Then C equals 
to the set 0 = {o I o is density-reachable from p wrt. Eps and 
MinPts } . 

4. DBSCAN: Density Based Spatial Clustering 
of Applications with Noise 

In this section, we present the algorithm DBSCAN (Density 
Based Spatial Clustering of Applications with Noise) which 
is designed to discover the clusters and the noise in a spatial 
database according to definitions 5 and 6. Ideally, we would 
have to know the appropriate parameters Eps and MinPts of 
each cluster and at least one point from the respective clus- 
ter. Then, we could retrieve all points that are density-reach- 
able from the given point using the correct parameters. But 
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there is no easy way to get this information in advance for all 
clusters of the database. However, there is a simple and ef- 
fective heuristic (presented in section section 4.2) to deter- 
mine the parameters Eps and MinPts of the “thinnest”, i.e. 
least dense, cluster in the database. Therefore, DBSCAN 
uses global values for Eps and MinPts, i.e. the same values 
for all clusters. The density parameters of the “thinnest” 
cluster are good candidates for these global parameter values 
specifying the lowest density which is not considered to be 
noise. 

4.1 The Algorithm 
To find a cluster, DBSCAN starts with an arbitrary point p 
and retrieves all points density-reachable from p wrt. Eps 
and MinPts. If p is a core point, this procedure yields a clus- 
ter wrt. Eps and MinPts (see Lemma 2). If p is a border point, 
no points are density-reachable from p and DBSCAN visits 
the next point of the database. 

Since we use global values for Eps and MinPts, DBSCAN 
may merge two clusters according to definition 5 into one 
cluster, if two clusters of different density are “close” to each 
other. Let the distance between two sets of points Sl and S2 
be defined as dist (Sl, S2) = min { dist(p,q) I p E Sl, q E Sz}. 
Then, two sets of points having at least the density of the 
thinnest cluster will be separated from each other only if the 
distance between the two sets is larger than Eps. Conse- 
quently, a recursive call of DBSCAN may be necessary for 
the detected clusters with a higher value for MinPts. This is, 
however, no disadvantage because the recursive application 
of DBSCAN yields an elegant and very efficient basic algo- 
rithm. Furthermore, the recursive clustering of the points of 
a cluster is only necessary under conditions that can be easi- 
ly detected. 

In the following, we present a basic version of DBSCAN 
omitting details of data types and generation of additional 
information about clusters: 

DBSCAN (SetOfPoints, Eps, MinPts) 

// SetOfPoints is UNCLASSIFIED 
ClusterId := nextId(NOISE); 
FOR i FROM 1 TO SetOfPoints.size DO 

Point := SetOfPoints.get(i); 
IF Point.ClId = UNCLASSIFIED THEN 

IF ExpandCluster(SetOfPoints, Point, 
ClusterId, Eps, MinPts) THEN 

ClusterId := nextId(ClusterId) 
END IF 

END IF 
END FOR 

END; // DBSCAN 

SetOf Points is either the whole database or a dis- 
covered cluster from a previous run. Eps and MinP t s are 
the global density parameters determined either manually or 
according to the heuristics presented in section 4.2. The 
function SetOf Points. get (i) returns the i-th ele- 
ment of Se t0 f PO int s . The most important function 

usedby DBSCAN is ExpandCluster whichispresent- 
ed below: 
ExpandCluster(SetOfPoints, Point, ClId, Eps, 

MinPts) : Boolean; 
seeds:=SetOfPoints.regionQuery(Point,Eps); 
IF seeds.size<MinPts THEN // no core point 

SetOfPoint.changeClId(Point,NOISE); 
RETURN False; 

ELSE // all points in seeds are density- 
// reachable from Point 

SetOfPoints.changeClIds(seeds,ClId); 
seeds.delete(Point); 
WHILE seeds <> Empty DO 

currentP := seeds.first(); 
result := SetOfPoints.regionQuery(currentP, 

EPS); 
IF result.size >= MinPts THEN 

FOR i FROM 1 TO result.size DO 
resultP := result.get(i); 
IF resultP.ClId 

IN {UNCLASSIFIED, NOISE} THEN 
IF resultP.ClId = UNCLASSIFIED THEN 

seeds.append(resultP); 
END IF; 
SetOfPoints.changeClId(resultP,ClId); 

END IF: // UNCLASSIFIED or NOISE 
END FOR; 

END IF; // result.size >= MinPts 
seeds.delete(currentP) ; 

END WHILE; // seeds <> Empty 
RETURN True; 

END IF 
END; // ExpandCluster 

A call of SetOfPoints.regionQue- 
ry(Point,Eps) returns the Eps-Neighborhood of 
Point in SetOf Points as a list of points. Region que- 
ries can be supported efficiently by spatial access methods 
such as R*-trees (Beckmann et al. 1990) which are assumed 
to be available in a SDBS for efficient processing of several 
types of spatial queries (Brinkhoff et al. 1994). The height of 
an R*-tree is O(log n) for a database of n points in the worst 
case and a query with a “small” query 5egion has to traverse 
only a limited number of paths in the R -tree. Since the Eps- 
Neighborhoods are expected to be small compared to the 
size of the whole data space, the average run time complexi- 
ty of a single region query is O(log n). For each of the n 
points of the database, we have at most one region query. 
Thus, the average run time complexity of DBSCAN is 
O(n * log n). 

The ClId (clusterId) of points which have been marked 
to be NO1 SE may be changed later, if they are density-reach- 
able from some other point of the database. This happens for 
border points of a cluster. Those points are not added to the 
seeds-list because we already know that a point with a 
ClId of NOISE is not a core point. Adding those points to 
seeds would only result in additional region queries which 
would yield no new answers. 

If two clusters Cl and C2 are very close to each other, it 
might happen that some point p belongs to both, Cr and C2. 
Then p must be a border point in both clusters because other- 
wise C1 would be equal to C2 since we use global parame- 
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ters. In this case, point p will be assigned to the cluster dis- 
covered first. Except from these rare situations, the result of 
DBSCAN is independent of the order in which the points of 
the database are visited due to Lemma 2. 

4.2 Determining the Parameters Eps and MinPts 
In this section, we develop a simple but effective heuristic to 
determine the parameters Eps and MinPts of the “thinnest” 
cluster in the database. This heuristic is based on the follow- 
ing observation. Let d be the distance of a point p to its k-th 
nearest neighbor, then the d-neighborhood of p contains ex- 
actly k+l points for almost all points p. The d-neighborhood 
of p contains more than k+l points only if several points 
have exactly the same distance d from p which is quite un- 
likely. Furthermore, changing k for a point in a cluster does 
not result in large changes of d. This only happens if the k-th 
nearest neighbors of p for k= 1,2,3, . . . are located approxi- 
mately on a straight line which is in general not true for a 
point in a cluster. 

For a given k we define a function k-dist from the database 
D to the real numbers, mapping each point to the distance 
from its k-th nearest neighbor. When sorting the points of the 
database in descending order of their k-dist values, the graph 
of this function gives some hints concerning the density dis- 
tribution in the database. We call this graph the sorted k-dist 
graph. If we choose an arbitrary point p, set the parameter 
Eps to k-dist(p) and set the parameter MinPts to k, all points 
with an equal or smaller k-dist value will be core points. If 
we could find a threshold point with the maximal k-dist val- 
ue in the “thinnest” cluster of D we would have the desired 
parameter values. The threshold point is the first point in the 
first “valley” of the sorted k-dist graph (see figure 4). All 
points with a higher k-dist value ( left of the threshold) are 
considered to be noise, all other points (right of the thresh- 
old) are assigned to some cluster. 

4-dist . 
t 

. 
threshold 
point 

/ nolr + points 

figure 4: sorted 4-dist graph for sample database 3 
In general, it is very difficult to detect the first “valley” au- 

tomatically, but it is relatively simple for a user to see this 
valley in a graphical representation. Therefore, we propose 
to follow an interactive approach for determining the thresh- 
old point. 

DBSCAN needs two parameters, Eps and MinPts. How- 
ever, our experiments indicate that the k-dist graphs for k > 4 
do not significantly differ from the 4-dist graph and, further- 
more, they need considerably more computation. Therefore, 
we eliminate the parameter MinPts by setting it to 4 for all 
databases (for 2-dimensional data). We propose the follow- 
ing interactive approach for determining the parameter Eps 
of DBSCAN: 

. The system computes and displays the 4-dist graph for 
the database. 

. If the user can estimate the percentage of noise, this per- 
centage is entered and the system derives a proposal for 
the threshold point from it. 

. The user either accepts the proposed threshold or selects 
another point as the threshold point. The 4-dist value of 
the threshold point is used as the Eps value for DBSCAN. 

5. Performance Evaluation 
In this section, we evaluate the performance of DBSCAN. 
We compare it with the performance of CLARANS because 
this is the first and only clustering algorithm designed for the 
purpose of KDD. In our future research, we will perform a 
comparison with classical density based clustering algo- 
rithms. We have implemented DBSCAN in C++ based on an 
implementation of the R*-tree (Beckmann et al. 1990). All 
experiments have been run on HP 735 / 100 workstations. 
We have used both synthetic sample databases and the data- 
base of the SEQUOIA 2000 benchmark. 

To compare DBSCAN with CLARANS in terms of effec- 
tivity (accuracy), we use the three synthetic sample databas- 
es which are depicted in figure 1. Since DBSCAN and 
CLARANS are clustering algorithms of different types, they 
have no common quantitative measure of the classification 
accuracy. Therefore, we evaluate the accuracy of both algo- 
rithms by visual inspection. In sample database 1, there are 
four ball-shaped clusters of significantly differing sizes. 
Sample database 2 contains four clusters of nonconvex 
shape. In sample database 3, there are four clusters of differ- 
ent shape and size with additional noise. To show the results 
of both clustering algorithms, we visualize each cluster by a 
different color (see www availability after section 6). To give 
CLARANS some advantage, we set the parameter k to 4 for 
these sample databases. The clusterings discovered by 
CLARANS are depicted in figure 5. 

database 1 database 2 database 3 
figure 5: Clusterings discovered by CLARANS 

For DBSCAN, we set the noise percentage to 0% for sam- 
ple databases 1 and 2, and to 10% for sample database 3, re- 
spectively. The clusterings discovered by DBSCAN are de- 
picted in figure 6. 

DBSCAN discovers all clusters (according to definition 
5) and detects the noise points (according to definition 6) 
from all sample databases. CLARANS, however, splits clus- 
ters if they are relatively large or if they are close to some 
other cluster. Furthermore, CLARANS has no explicit no- 
tion of noise. Instead, all points are assigned to their closest 
medoid. 
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database 1 database 2 database 3 
figure 6: Clusterings discovered by DBSCAN 

To test the efficiency of DBSCAN and CLARANS, we 
use the SEQUOIA 2000 benchmark data. The SEQUOIA 
2000 benchmark database (Stonebraker et al. 1993) uses real 
data sets that are representative of Earth Science tasks. There 
are four types of data in the database: raster data, point data, 
polygon data and directed graph data. The point data set con- 
tains 62,584 Californian names of landmarks, extracted 
from the US Geological Survey’s Geographic Names Infor- 
mation System, together with their location. The point data 
set occupies about 2.1 M bytes. Since the run time of CLAR- 
ANS on the whole data set is very high, we have extracted a 
series of subsets of the SEQUIOA 2000 point data set con- 
taining from 2% to 20% representatives of the whole set. 
The run time comparison of DBSCAN and CLARANS on 
these databases is shown in table 1. 

Table 1: run time in seconds 

number of points ( 1252 1 2503 1 3910 ( 5213 1 6256 

DBSCAN 1 3.1 1 6.7 ( 11.3 1 16.0 ( 17.8 

‘g;- 1 758 1 3026 ( 6845 ( 11745 1 18029 

number of points ) 7820 1 8937 1 10426 1 12512 1 

DBSCAN 1 24.5 1 28.2 1 32.7 1 41.7 I 

‘;;;- 1 29826 1 39265 1 60540 1 80638 1 

The results of our experiments show that the run time of 
DBSCAN is slightly higher than linear in the number of 
points. The run time of CLARANS, however, is close to qua- 
dratic in the number of points. The results show that DB- 
SCAN outperforms CLARANS by a factor of between 250 
and 1900 which grows with increasing size of the database. 

6. Conclusions 
Clustering algorithms are attractive for the task of class iden- 
tification in spatial databases. However, the well-known al- 
gorithms suffer from severe drawbacks when applied to 
large spatial databases. In this paper, we presented the clus- 
tering algorithm DBSCAN which relies on a density-based 
notion of clusters. It requires only one input parameter and 
supports the user in determining an appropriate value for it. 
We performed a performance evaluation on synthetic data 

and on real data of the SEQUOIA 2000 benchmark. The re- 
sults of these experiments demonstrate that DBSCAN is sig- 
nificantly more effective in discovering clusters of arbitrary 
shape than the well-known algorithm CLARANS. Further- 
more, the experiments have shown that DBSCAN outper- 
forms CLARANS by a factor of at least 100 in terms of effi- 
ciency. 

Future research will have to consider the following issues. 
First, we have only considered point objects. Spatial data- 
bases, however, may also contain extended objects such as 
polygons. We have to develop a definition of the density in 
an Eps-neighborhood in polygon databases for generalizing 
DBSCAN. Second, applications of DBSCAN to high di- 
mensional feature spaces should be investigated. In particu- 
lar, the shape of the k-dist graph in such applications has to 
be explored. 

WWW Availability 
A version of this paper in larger font, with large figures and 
clusterings in color is available under the following URL: 
http://www.dbs.informatik.uni-muenchen.de/ 
dbs/project/publikationen/veroeffentlichun- 
gen.html. 
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