
 

 

 

 

 

LIVECONNECT 

 

Phillip Denis 

Anju Tai 

 

March 1, 2001 



Table of Contents 

INTRODUCTION............................................................................................................ 3 

2. SETTING UP THE DEVELOPMENT ENVIRONMENT ............................................. 5 

3. JAVA TO JAVASCRIPT COMMUNICATION............................................................ 6 

3.1 JSOBJECT METHODS.............................................................................................. 6 
3.2 ACCESSING JAVASCRIPT FUNCTIONALITY ................................................................ 8 
3.3 JAVA TO JAVASCRIPT DATA TYPE CONVERSIONS..................................................... 9 

4. JAVASCRIPT TO JAVA COMMUNICATION.......................................................... 10 

4.1 CALLING JAVA METHODS ...................................................................................... 10 
4.2 CONTROLLING JAVA APPLETS ............................................................................... 11 
4.3 CONTROLLING PLUG-INS ....................................................................................... 12 
4.4 JAVASCRIPT TO JAVA DATA TYPE CONVERSION..................................................... 12 

5. JAVA TO PLUG-IN COMMUNICATION ................................................................. 13 

6. SECURITY CONSIDERATIONS.............................................................................. 14 

6.1 LIVECONNECT ATTACKS........................................................................................ 14 

6. CONCLUSION......................................................................................................... 16 



1 Introduction 
Java, JavaScript and browser plug-ins are powerful tools that enable developers to create 

sophisticated web-applications.  However, each of these languages is subject to it’s own 

set of limitations. 

 

LiveConnect is a technology developed by Netscape Communications Inc.  It allows 

intercommunication between these languages to create powerful, integrated web-

applications.  This communication takes place between an applet and a script on the 

same page or with a plug-in that was loaded by a page.  It allows the following: 

1. JavaScript can access Java applet methods, classes, packages and variables 

2. Java applets can access JavaScript methods and properties  

3. Java applets can call plug-in methods 

4. Plug-in methods can be called by Java applets  

 

 

Figure 1 – LiveConnect Overview 

 

Note that LiveConnect does not allow a plug-in to communicate directly with JavaScript, 

but this is a non-issue because it can be simulated using Java as an intermediary. 

 

LiveConnect was implemented in Netscape’s browser product, Netscape Navigator 

(version 3.0 and later).  It was a revolutionary new technology because it allowed 

channels of communication on the client side without the need for interaction with the 



server.  After being introduced by Netscape, Microsoft incorporated it’s own 

implementation of the LiveConnect technology in versions of Internet Explorer 4.0 and 

later. 

 

Both Java and JavaScript have to be enabled in the browser for LiveConnect to work.  If 

either of these is disabled, it will render this technology useless.  The “Enable JavaScript” 

and “Enable Java” checkboxes both have to be checked, as is illustrated in the figure 

below. 

 

Figure 2 - Netscape Preferences Dialog 

 



2 Setting Up the Development Environment 

Before you can use create Java applets and plug-ins that use the LiveConnect 

technology, you need to set up the environment for proper communication to take place.  

For Java to JavaScript communication:  

1. Add the java40.jar file to your CLASSPATH. This file is distributed with Netscape 

browsers, and can be found in the Program\java\classes subdirectory of the 

Netscape distribution. 

2. Import the netscape.javascript package in your Java applet.  

import netscape.javascript.*;  

3. Give the Java applet permission to access the JavaScript in your HTML file. This 

is done by using the MAYSCRIPT attribute in the <APPLET> tag.  

<APPLET CODE="someapplet.class" WIDTH=... HEIGHT=... MAYSCRIPT>

...

</APPLET>  

If permission is not granted to access JavaScript, an exception will be generated. 

For JavaScript to Java communication, the Java methods called by JavaScript code must 

be public. 

For Java communication with plug-ins:  

1. Add the java40.jar file to your CLASSPATH. This file is distributed with Netscape 

browsers, and can be found in the Program\java\classes subdirectory of the 

Netscape distribution.Java plug-ins are to be compiled with the Plugin class (or a 

subclass of the Plugin class) to allow JavaScript and Java applets to access the 

plug-ins.  Java code may also need to declare objects of class Plugin.  



3 Java to JavaScript Communication 

Java to JavaScript communication is very simple. Manipulations of JavaScript objects 

from Java are done through a package created by Netscape called netscape.javascript. 

This package contains 2 classes - JSObject and JSException. The JSObject class acts 

as a wrapper for JavaScript objects. It allows Java applet code to access JavaScript 

functions, object properties, and data structures. The JSException class is used to throw 

exceptions when JavaScript errors are encountered.  

3.1 JSObject Methods 

The JSObject class contains the following methods for communicating with JavaScript. 

The most commonly used methods are getWindow(), getMember(), setMember(), call() 

and eval().  

JSObject Method  Functionality  JavaScript Equivalent  

public static JSObject 
getWindow(Applet a)  

Returns a JSObject for the 
window containing the 
given applet passed in as 
a parameter.  

 -  

public Object call(String 
methodName, Object args[ ])  Calls a JavaScript method. 

this.methodName(args[0], 
args[1], ...)  

public Object eval(String s)  
Evaluates a JavaScript 
method passed in as a 
parameter.  

 -  

public Object 
getMember(String name)  

Retrieves a named 
member of a JavaScript 
object.  

this.name  

public Object getSlot(int 
index)  

Retrieves an indexed 
member of a JavaScript 
object.  

this[index]  

public void 
removeMember(String name)  

Removes a named 
member of a JavaScript 
object.  

 -  

public void setMember(String 
name, Object value)  

Sets a named member of 
a JavaScript object.  this.name = value  

public void setSlot(int index, 

Object value)  

Sets an indexed member of 

a JavaScript object.  
this[index] = value  



public String toString()  
Converts a JSObject to a 

String.  
 -  

 



3.2 Accessing JavaScript Functionality 

Once you have set up the environment, you can start accessing JavaScript objects and 

functions from your Java applet. 

1. First, you need to create a reference to the window that contains the JavaScript 

that you want to access, and of course, the applet itself. This is done through the 

JSObject static method getWindow().  

For example, in your Java code, you would write  

JSObject window = JSObject.getWindow(this);  

2. To access JavaScript objects and properties, the getMember() method is very 

handy. Since the return type of the getMember() method is Object, you need to 

cast the return Object to the necessary type. Eg. JSObject, int, etc.  

For example,  

JSObject doc = (JSObject) window.getMember("document");  

JSObject myform = (JSObject) doc.getMember("someFormName");  

JSObject someTextField = (JSObject)

myform.getMember("someTextFieldName");  

int screenHeight = (int) window.getMember("screen.height");  

3. To set the properties of JavaScript objects, the setMember() is used. Note that 

the second argument must be a Java Object.  

For example: 

To set the background color of the page,  

doc.setMember("bgColor", "red");  

To set the value of a text field,  

someTextField.setMember("value", "someTextValue");  



4. To call JavaScript methods of interest, either use the call() or eval() method. 

LiveConnect does not restrict these methods to the JavaScript built-in methods. 

User-defined functions can be called as well.  

For example, to bring up a message using the JavaScript alert() method,  

- Using the call() method:  

String[ ] message = {"An alert message."}

window.call("alert", message);  

- Using the eval() method: 

window.eval("alert(\"An alert message.\");");  

3.3 Java to JavaScript Data Type Conversions 

Values passed from Java to JavaScript are converted as outlined in the following table.  

Java Type  JavaScript Type  

Byte, char, short, int, 
long, float, double  number  

boolean  boolean  

JSObject  original JavaScript object  

array  JavaScript pseudo-Array object (behaves just 
like a JavaScript array object)  

object of any other class  

Converts
to 

---> 

JavaScript wrapper (can be used to access 
methods and fields of the Java object)  



4 JavaScript to Java Communication 

JavaScript can use LiveConnect technology in the following ways: 

 1) Call Java methods 

 2) Control Java applets 

 3) Control Java plug-ins 

 

4.1 Calling Java Methods 

A developer can directly call Java methods in JavaScript code.  This is accomplished 

with regular Java syntax: 

var today = new java.util.Date();

System.out.println(today);

The above example will print the value of the date object (the current date) to the Java 

console window, just as a Java applet would if it were to execute the same code.  Any 

public method or instance variable can be accessed in JavaScript code. 

 

Accessing packages in JavaScript is also accomplished using regular Java syntax, but 

the package name should have the prefix "Packages.".  This is necessary because Java 

packages are properties of the Packages object (in JavaScript).  The syntax for 

referencing a Java package is [Package.]<packageName>.<className>.<methodName>.  

For example, to access the ConnectionPool class's getConnection method of the 

com.phil.denis.db package in JavaScript, the following code would be used: 

Packages.com.phil.denis.db.ConnectionPool.getConnection();

 

There are three special packages that do not need the "Packages." prefix.  They are 

java.*, sun.* and netscape.*.  These special packages are aliased because they are used 

so frequently.  Both of the following statements are legal in JavaScript: 

var myVector = new java.util.Vector();

var myVector = new Packages.java.util.Vector();

 



Since there is no JavaScript equivalent for Java's import statement, all calls must be fully 

qualified.  To avoid this, a developer can create his own alias by assigning the class that 

would be imported (in Java) to a JavaScript variable: 

var Vector = java.util.Vector;

var myVector = new Vector();

 

4.2 Controlling Java Applets 

JavaScript can call Java methods, but it can also access the methods and instance 

variables of any applet found in the web page containing the JavaScript.  Applets can be 

referred to by accessing the applets array of the document object, or by using the 

property of the document object named after the applet.  The applets array can either be 

indexed by number or by the name of the applet.  If an index is used, the applets are 

numbered in the order they appear from the top of the page and from left to right.   

 

An example of the HTML needed to put an applet on a web page is: 

<APPLET CODE=”MyApplet.class” NAME="myApplet" WIDTH=100

HEIGHT=100>

 

The above applet could be referenced in any of the following ways: 

By Name document.myApplet

By Index document.applets[0]

By Associative Name document.applets[“myApplet”]

 

All public variables of the applet are available from JavaScript.  All static methods and 

properties of an applet are accessible as methods and properties of the Applet object 

(which is contained in the document object). 

 

There are several possibilities for using JavaScript to control Java applets.  One could 

include form elements on a screen to capture some user information and use a 

JavaScript event handler to call some method of the Java applet based on the value 

input into the form field.  Other uses include having buttons on the HTML page to 



start/stop the applet.  These buttons would be connected to JavaScript methods that 

called the applet’s start() and stop() methods. 

 

4.3 Controlling Plug-ins 

Plug-ins can be referenced as elements of the embeds array (which is a property of the 

document object).  They can be accessed by number or as a variable of the document 

array, similar to the way that Java applets are accessed.  The embeds array can either 

be indexed by number or with the name of the plug-in.  An example of the HTML needed 

to put a plug-in on a web page is: 

<EMBED SRC=myAvi.avi NAME="myEmbed" WIDTH=100 HEIGHT=100>

 

All of the following examples of referencing the above plug-in are legal syntactically: 

By Name document.myEmbed

By Index document.embeds[0]

By Associative Name document.embeds[“myEmbed”]

 

4.4 JavaScript to Java Data Type Conversion 

Values passed to Java from JavaScript are converted as indicated in the following table: 

 

JavaScript Type Java Type  

Numbers Float 

Boolean  Boolean  

Strings  Strings  

Other 

Converts

to 

---> 

JSObject 

 

A consequence of the data conversion that takes place is that JavaScript values appear 

in Java as objects of the java.lang.Object class.  They have to be cast to the appropriate 

type before being used in Java code. 



5 Java to Plug-in Communication 

In order for Java to communicate with a plug-in, the plug-in must have support for 

LiveConnect. The plug-in must have a LiveConnect API that Java can use.  For example, 

the LiveAudio plug-in (a plug-in for playing sounds) would have public play() and stop() 

methods.  

The <APPLET> tag in the web page must have the MAYSCRIPT attribute so that the 

applet and the plug-in can communicate. The MAYSCRIPT attribute is also necessary for 

the applet to be able to create a reference to the plug-in from JavaScript.  

Java associates plug-ins with the class Plugin from the netscape.plugin package. To 

reference a plug-in embedded in a web page,  

Plugin plugin = (Plugin) doc.getMember("SomePluginName");

For example, to reference a LiveAudio plug-in,  

JSObject window = JSObject.getWindow(this);

JSObject doc = (JSObject) window.getMember("document");

SoundPlayer plugin = (SoundPlayer)
doc.getMember("LiveAudioPluginName");

Now, you can manipulate the plug-in by simply calling its methods.  

plugin.play();

plugin.stop();  



6 Security Considerations 

Downloading and executing code from the Internet can introduce security problems.  The 

computer executing the code could open itself to external monitoring, exporting of 

information, and other potentially dangerous attacks.  Some attacks can change the 

configuration of the host or even remove files, rendering the machine unusable. 

 

Applets that are executed in a browser run in a “sandbox” that introduces security 

restrictions on the Java code.  This is necessary because Applets are usually written by 

unknown authors and consist of untrusted code.  Some examples of the security 

restrictions are: 

• Applets cannot read or write to the local file systems 

• Applets cannot perform most networking operations (such as opening socket 

connections) 

• Applets cannot make use of some of the AWT facilities (such as initiating print 

jobs) 

 

The consequence of opening the communication channels that LiveConnect does is that 

it introduces doors to security flaws in the browser.  The “sandbox” that Java applets run 

in does not allow potentially dangerous operations to be performed by applet code.  

However, these concerns are reopened and represent real threats once LiveConnect is 

introduced.  For example, a Java applet can ask JavaScript to open a socket on its 

behalf.  This socket can be used to send the server private information and perform 

other malicious activities. 

 

6.1 LiveConnect Attacks 

Like all other software projects, LiveConnect developers had to meet tight deadlines.  

This means that there were many implementation flaws in its infancy, some of which are 

still being discovered and exploited to this day.  These flaws enable intruders to perform 

attacks on a host computer that is executing their code.  One such attack, called the 

Singapore Privacy Bug, allowed an attacker to track user activities and retrieve 

information from the cookies file.  Another attack exploited the implementation flaw of 



LiveConnect that goes against the need-to-know security principle.  Applets communicate 

with JavaScript through the JSObject.  If an applet overrides it's stop() method, it will 

continue to run after the web page containing it is replaced by a new page.  If the applet 

then calls a method of the JSObject after the web page that loaded it is no longer 

showing, it throws a JSException.  It is not difficult to hand-edit the JSObject class to 

catch the JSException that would kill off the applet.  Thus, applets can be made that 

continue to run and call JavaScript functions after the web page that contained it is long 

forgotten.  This bug was fixed in Netscape 4.01a, but many older browsers are still in 

use.  Also, if this type of bug was present in early versions of LiveConnect, it makes one 

wonder what security holes are yet to be discovered. 

 

Other attacks include tracking or monitoring the user's activities (i.e. the web pages 

he/she visits) and gathering privileged information such as usernames and passwords.  

These attacks are much more complicated than the ones listed above and are beyond 

the scope of this report.  The reader need only be aware that these types of attacks are 

real and that LiveConnect is a mixed blessing at best.  It is a technology that allows 

great interaction between Java, JavaScript and plug-ins, enabling developers to build 

powerful applications, but with great power comes great responsibility.  There are some 

people out there who would exploit this technology for malicious purposes.



7 Conclusion 

There are many web technologies that have the capabilities to accomplish different tasks 

with ease.  For example, JavaScript is simple to use, and it can use the Document 

Object Model to create amazing web applications.  It is also easy to define functions in 

an HTML page with JavaScript that manipulate the contents and properties of the web 

page.  Java is a powerful platform-independent language that is flexible and easy to use.  

Plug-ins give browsers a way to interact with users through media content like sounds 

and video.  Netscape's LiveConnect technology transforms the browser into extremely 

powerful application development platform by combining the strengths of JavaScript, 

Java, and plug-ins so that they can interact in real time on the client side.  Web 

developers should be wary of the threats that LiveConnect poses, though.  If used 

properly and responsibly, LiveConnect allows web developers to expand their creativity 

and construct interactive and complex web applications. 


