
 1

PHP & Web Services / PHP & XML

Unix IDs:
baxter

muhammad
sonu

walberg

 2

PHP & Web Services / PHP & XML .. 1

PHP & Web Services .. 3

NuSOAP – A SOAP Implementation for PHP... 3

Server Using NuSOAP.. 4

Client using NuSOAP ... 5

PHP & XML.. 7

DOM Based XML Parsing ... 7

SAX/Event Based XML Parsing.. 10

 3

PHP & Web Services

PHP is an ideal language to implement and use a web service as the available packages

simplify the implementation details. The syntax is similar to Perl, so it should not be

difficult to read and understand the sample code provided in this tutorial. While PHP

does not bundle classes/packages/modules to make use of SOAP, two major SOAP

implementations exist that can be downloaded and easily installed. They are: NuSOAP,

and PHP:PEAR::SOAP. PEAR refers to the “PHP Extension and Application

Repository.” It is a distribution system for reusable Open-Source PHP

classes/packages/modules.

This example based report is divided into 3 major parts:

 Server/Client using NuSOAP

 DOM Model XML parsing

 SAX/Event Based XML Parsing

NuSOAP – A SOAP Implementation for PHP

You can download both the toolkit and the documentation for NuSOAP at this link:

http://dietrich.ganx4.com/nusoap/index.php

One of the nice features of using the NuSOAP module is the built-in WSDL support.

Recall that in Java, a deployment descriptor XML file is required to describe the web

 4

service and register it for world use, even when the .wsdl file is provided. In NuSOAP,

this step is conveniently avoided. NuSOAP allows the .wsdl file to be loaded and

registered in very few lines of code, which we will explain later on.

Server Using NuSOAP

The following code is an example of a server built in PHP that returns the GST for a

given amount. It is assumed that the nusoap.php package has been downloaded and

installed, and that the web server is configured to handle PHP scripts.

1. <?
2. require_once("nusoap.php");
3. $ns="http://www.yourserver.com/";
4. $server = new soap_server();
5. $server->configureWSDL('CanadaTaxCalculator',$ns);
6. $server->wsdl->schemaTargetNamespace=$ns;
7. $server->register('CalculateTax',
8. array('amount' => 'xsd:string'),
9. array('return'=>'xsd:string'),
10. $ns);
11. function CalculateTax($amount){
12. $taxcalc=$amount*.07;
13. return new soapval('return','xsd:string',$taxcalc);
14. }
15. $server->service($HTTP_RAW_POST_DATA);
16. ?>

Code Explanation:

We assume that the reader has general programming experience and is able to understand

to understand the code flows, functions and other such coding basics in this example as

well as all that follow.

Lines 1 and 16 denote the start and end of a PHP script.

Line 2 includes the NuSOAP package.

Line 3 designates the URI for the web service.

 5

Lines 4-6 create a new instance of a soap_server object, and configure the service name
and namespace for the wsdl.

Lines 7-10 make the server aware of the function/method ‘CalculateTax’ which takes in a
string and returns a string.

Lines 11-14 define the ‘CalculateTax’ method. Notice the return value.

Line 15 simply invokes the service.

Once the above code is deployed on the server, the service springs to life.

NuSOAP – Built-in WSDL Support:

As mentioned earlier, the built-in WSDL support is where NuSOAP’s strength can be

seen. With any server built using NuSOAP and PHP, adding “?wsdl” to the end of the

server’s URL will dynamically generate and display the WSDL. Assuming the above

code was saved to a file called server.php and we were running it on yourserver.com, the

WSDL can easily be displayed by opening a web browser and navigating to the following

URL:

http://www.yourserver.com/server.php?wsdl

Client using NuSOAP

Creating a client using NuSOAP is very straightforward because NuSOAP’s built-in

WSDL support simplifies the task.

1. <?
2. require_once('nusoap.php');
3. $wsdl = “http://www.yourserver.com/server.php?wsdl”;
4. $client=new soapclient($wsdl, 'wsdl');
5. $param=array('amount'=>'15.00',);
6. echo $client->call('CalculateTax', $param);
7. ?>

 6

Code Explanation:

Lines 1 and 7 denote the start and end of the PHP script.

Line 2 includes the NuSOAP package.

Line 3 assigns a variable to a WSDL. Note that the WSDL is dynamically generated by

appending “?wsdl” to the server’s URL.

Line 4 creates a new instance of a soap client. The client object is given the WSDL

describing the service.

Line 5 creates the parameter to be passed to the web service. In this example, the client is

requesting the web service to return the GST value for a $15.00 purchase (This can easily

be dynamic of course, like getting the value from a form. We have kept it simple as this is

designed as a basic introduction).

Line 6 makes a call to the web service and displays the return result via the ‘echo’ call.

As the examples above demonstrate, creating servers and clients for web services is very

straightforward in PHP using a package such as NuSOAP. Implementation is not as

tedious as in Java, and extra web-server components such as Tomcat are required.

 7

PHP & XML

Similar to the style above, we have taken an example based approach to this section as

well. Note that what follows assumes basic knowledge of PHP. For an introduction to

PHP, we recommend you look at the group that covered the basics of PHP as their main

presentation topic.

DOM Based XML Parsing

 PHP 5 has a built in extension that allows XML parsing using the DOM model.

This extension fully conforms to the World Wide Web Consortium’s standards (Hooray

for standards compliance). One down side to looking at PHP 5 with respect to PHP

functionality is that although PHP in general aims to be backwards compatible, there are

however many issues in the new release when it comes to compatibility with older

versions (something to keep in mind if you are working on PHP 4x). DOM parsing is

one of the casualties, and thus some of the following code may not work under anything

older than PHP 5.

The first step to manipulating XML in PHP using the DOM model is to create a

DomDocument Object.

 $dom = new DomDocument();

With this object created you can then give it an XML file to use as a source.

 8

$dom->load(“xmlfile.xml”);

Now of course, when dealing with XML parsing, validation is an important concern.

PHP certainly has not let us down in this respect. Validation can be done using DTD,

XML Schema, and RelaxNG documents (another XML schema language, see details at

www.relaxng.org). Simple one line functions can validate based on these documents and

return boolean values based on the outcome of the validation.

//using the DomDocument created above
$dom->validate(“mydtd.dtd”);
$dom->schemaValidate(“myschema.xsd”);
$dom->relaxNGValidate(“myRNG.rng”);

As well as the boolean return values, any errors are also returned as PHP warnings.

Now that we have a DomDocument loaded with a valid XML document, we want to be

able to traverse it. This can be done in two different ways (on top of the simple standard

way of iterating over the tags/nodes of the document one by one):

1. Getting a list of all nodes that correspond to a named Tag

$mytags = $dom->getElementsByTagName(“myTag”);

2. Getting a unique node

$myID = $dom->getElementByID(“myID”);

Accessing child nodes for any unique node is simple as well:

 $children = $myNode->childNodes;

Another way in which the PHP DomDocument is very useful is its ability to also write

out XML files. This functionality can be used to easily create and/or modify XML

documents. To add new elements to an XML Document:

 $myElement = $dom->createElement(“myElement”);

 9

 $myText = $dom->createTextNode(“A Text Node”);
 $myElement->appendChild($myText);
 $dom->documentElement->appendChild($myElement);

In the code snippet above, the nodes are created and chained together, and then the new

element is inserted into the root element of the document.

Documents (XML files) created or modified using the two codes above can then be

generated in two different ways.

1. Either as direct output (to stdout or a browser)

 print $dom->saveXML();

2. Or output to a file

 print $dom->save(“myXMLfile.xml”);

DOM Model - Benefits

The benefits of the DOM model in PHP can be summarized as follows:

• Ease of use, as can be seen from the code above. The code is fairly straight

forward; much can be accomplished with minimum lines of code

• Provides a simple interface for a variety of tasks such as validation, querying, and

modifying XML

• In memory parsing implies fast, non-sequential access

• Handy for visualizing data and transforming data on the fly

DOM Model - Drawbacks

The major drawbacks include:

• Parallel parsing of large documents can hog a lot of system memory

 10

• Building the in-memory tree representation of the document takes time

• This implementation does not support partial parsing of XML documents

SAX/Event Based XML Parsing

PHP includes an event-based XML parser as well. As with the DOM parser, its use is

straight forward and simple to implement. We will describe the use of the event based

parser with an example that also takes advantage of PHP’s object oriented features.

RSS: RSS (Really Simple Syndication, Rich Site Summary, take your pick) is a XML

based document that is common for headline news aggregation. Such feeds are available

from a wide variety of sources such as BBC, CNN, Disney, Slashdot, etc. The RSS

document describes and summarizes content of a web page(s) in distinct channels.

RSS Example:

<rdf:RDF>
 <channel rdf:about="http://www.sitepoint.com/rss.php">
 <title>SitePoint.com</title>
 <description>Master the Web!</description>
 <link>http://www.sitepoint.com/</link>
 <items>
 <rdf:Seq>
 <rdf:li
rdf:resource="http://www.PromotionBase.com/article/551"/>

 <rdf:li
rdf:resource="http://www.WebmasterBase.com/article/541"/>
 </rdf:Seq>
 </items>
 </channel>
 <item rdf:about="http://www.PromotionBase.com/article/551">
 <title>Escape Search Engine Caching</title>
 <description>Did you know that many search engines cache your
pages? While this practice can speed up a search, users might not
see your most recent site updates! Ralph shows how you can stop
search engines caching your pages.
 </description>
 <link>http://www.PromotionBase.com/article/551</link>

 11

 </item>
 .
 .
 .
 <item rdf:about="http://www.WebmasterBase.com/article/541">
 <title>Add JavaScript to Fireworks</title>
 <description>Does your design need more pizazz? Add
interactivity to your site without learning JavaScript! Matt
explains the creation of JavaScript effects in Fireworks, and
explores in detail the use of this program's tools.
 </description>
 <link>http://www.WebmasterBase.com/article/541</link>
 </item>
</rdf:RDF>

Now if you wanted to display the title, description, and link on your web site from one of

these RSS feeds, you cannot just display it as is, since most browsers are not very

discriminating in what they display when encountering XML. Also note that you may be

fetching multiple feeds every hour, every 10 minutes, or some other time frame so you do

not want to expend too much effort in extracting the information you want. This being

the case, you would not need or even want a DOM based parser for this purpose as the

overhead would be excessive and you would be parsing every single tag, including the

ones you know you do not need. The Event based XML Parser allows us to efficiently

parse and look at selective tags within the document, thus greatly minimizing the server

load and speeding up the process.

Following is an intermediate object oriented agent built with PHP that could be used to

fetch many RSS feeds and simply display the title, description and link.

Our first step is to create a class that will be used to keep track of where we are in the

XML document and output the information that we want. This class is based on the RSS

 12

feed shown as an example above and will be parsing the title, description and link from

that RSS feed.

Class RSSParser{
 //these variable will be used to test if we are in an ITEM
tag
 //and if so hold the pertinent information
 var $insideitem = false;
 var $tag = “”;
 var $title = “”;
 var $description = “”;
 var $link = “”;

 function startElement($parser, $tagName, $attrs){
 if($this->insideitem){
 $this->tag = $tagName;
 }
 elseif($tagName == “ITEM”){
 $this->insideitem = true;
 }
 }

 function characterData($parser, $data){
 if($this->insideitem){
 switch($this->tag){
 case “TITLE”:
 $this->title .= $data;
 break;
 case “DESCRIPTION”:
 $this->description .= $data;
 break;
 case “LINK”:
 $this->link .= $data
 break;
 }
 }
 }

 function endElement($parser, $tagName){
 if($tagName == “ITEM”){
 printf(“<p>%s</p>”,
 trim($this->link),

htmlspecialchars(trim($this->title)));
 printf(“<p>%s</p>”,

htmlspecialchars(trim($this-
>description)));

 $this->title = “”;
 $this->description = “”;

 13

 $this->link = “”;
 $this->insideitem = false;
 }
 }
}

Without knowing yet how these functions are called it is fairly simple to see what

they do. The startElement function tests to see if we are in an “ITEM” tag

and if so, records which tag within an item we are currently in. The

characterData function fills our class variables when we are inside an “ITEM”

tag with the proper values based on the tag. Finally the endElement function

prints the class variables in HTML when we exit an ITEM tag. Notice how this

class can be easily overhauled to parse any other actions based on the XML that

you are parsing. If you were to do so, the process shown below would be

identical once your class (as the example above) is written.

Now we shall see how this class (or any other) is used.

1. $xml_parser = xml_parser_create();
2. $rss_parser = new RSSParser();
3. xml_set_object($xml_parser,&$rss_parser);
4. xml_set_element_handler($xml_parser, "startElement",
"endElement");
5. xml_set_character_data_handler($xml_parser,
"characterData");
6. $fp = fopen("http://www.sitepoint.com/rss.php","r")
 or die("Error reading RSS data.");
7. while ($data = fread($fp, 4096)) //read in 4K chunks
8. xml_parse($xml_parser, $data, feof($fp))
 or die(sprintf("XML error: %s at line %d",

 xml_error_string(xml_get_error_code($xml_parser)),
 xml_get_current_line_number($xml_parser)));
9. fclose($fp);
10. xml_parser_free($xml_parser);

 14

How simple is that? Line 1 and 2 create instances of the PHP event based XML Parser

and our class respectively. Line 3 tells the PHP parser that our object is going to be

handling the events for it. Line 4 and 5 tell the parser which functions in our object are

going to be handling the events fired by entering a tag, seeing the text within a tag and

leaving a tag. Line 6 open our RSS feed, and line 7 starts reading it in, at most 4K at a

time. Now line 8 (the while loop) is the interesting one. This loop is what reads through

the portion of the document that has been read and fires the events as tags are

encountered. The final two lines are simply closing the file and freeing the memory.

Like Java, PHP will free this memory on its own, but why wait?

SAX/Event Based Model - Benefits

The benefits of the event driven parsing method include:

• Easy readability of RSS feeds (or any other XML documents that you wish to see

in a particular format)

• Selective parsing of the XML document

• Extremely light on memory usage, especially compared to the DOM model

• Easy as 1-2-3: Create the parser, set the handlers, and pass the feed

SAX/Event Based Model - Drawbacks

Drawbacks include:

• None of the advanced functionality of the DOM based parser such as non-

sequential access

 15

• Very complex searches or formatting can be difficult to implement (although once

implemented are encapsulated within the class)

• In an example like this there is no way a DTD can be used for validation

 16

References:

NuSOAP Implementation - http://dietrich.ganx4.com/nusoap/index.php

Web services – http://webservices.xml.com

DOM Model – http://www.zend.com/php5/articles/php5-xmlphp.php

DOM Model - http://www.w3.org/DOM/

SAX/Event Based XML Parsing - http://www.sitepoint.com/article/php-xml-parsing-rss-

1-0/2

SAX/Event Based XML Parsing - http://www.php.net

