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The function σ(n) =
∑

d|n d is the sum of divisors function, so for example σ(12) = 28. In
1913 Gronwall proved that

lim sup
n→∞

σ(n)

eγ n log log n
= 1,

where γ ≈ 0.57721 is Euler’s constant (see [4, Theorem 323]). This says that the maximal size
of σ(n) is roughly eγn log log n. The following theorem of Robin [7, Theorem 2] gives a more
refined version of this upper bound.

Theorem 1 For n ≥ 3 we have

σ(n)

eγ n log log n
< 1 +

0.6483

eγ(log log n)2
. (1)

In [7] Robin also proved the following striking result.

Theorem 2 The Riemann Hypothesis is true if and only if

σ(n)

eγ n log log n
< 1, for n ≥ 5041. (2)

For a lively exposition of this theorem and its connection to the Riemann Hypothesis see [5]. In
this note, we propose a method that will establish explicit upper bounds for σ(n)/eγn log log n.
Our main observation is that the least number violating the inequality (2) should be a super-
abundant number.

A positive integer n is said to be superabundant if σ(m)/m < σ(n)/n for all m < n. The
first 20 superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720,
840, 1260, 1680, 2520, 5040, 10080. The sequence of superabundant numbers is the sequence
A004394 in Sloane’s Encyclopedia [8]. The list of the first 500 superabundant numbers is
available at [6], where

M = 25484247877474623694559469201315033045359474150161923076850486576760360768000

is the largest superabundant number in the list.

1



Theorem 3 If there is any counterexample to Robin’s inequality (2), then the least such coun-
terexample is a superabundant number.

Proof It is known that there is no counterexample n to Robin’s inequality (2) with 5040 <
n ≤ 10080. Note that 10080 is a superabundant number.

Now, assume that n > 10080 is the minimal counterexample to the inequality and also
assume that n is not superabundant. Then there is a k < n such that σ(k)/k ≥ σ(n)/n.
Without loss of generality we may assume that k ≥ 10080. This is true since if k < 10080,
then σ(k)/k < σ(10080)/10080 (as 10080 is superabundant) and so we could choose instead
k = 10080.

We next note that since

σ(k)

k
≥ σ(n)

n
≥ eγ log log n > eγ log log k

then k (≥ 10080 > 5040) is a counterexample to Robin’s inequality (2). However, we as-
sumed that n was the minimal counterexample, so this is a contradiction. Therefore, if a
counterexample > 5040 exists, then the least counterexample must be superabundant. �

We point out that superabundant numbers form a very thin subset of the natural numbers.
More precisely, let S(x) be the number of superabundant numbers not exceeding x. Then in
[1], Alaoglu and Erdös state that

log (S(x))

(log log x)2

is bounded. It is an open problem whether

log (S(x))

log log x
(3)

is bounded or not. In [2], Briggs reports that the ratio (3) gives about 1.2 at log log x = 5.
Moreover, Erdös and Nicolas [3] proved that

lim inf
x→∞

log (S(x))

log log x
≥ 1 +

5

48
≈ 1.1042.

As a consequence of Theorem 3, one can attempt to disprove the Riemann Hypothesis
computationally by testing the inequality (2) for superabundant numbers. See [2] for informa-
tion regarding this approach and methods for generating superabundant numbers. The author
of [2] also mentions that, at the moment, there is no (guaranteed, fast) algorithmic method
known for finding all superabundant numbers below a given bound.

Finally we can numerically verify that the only numbers in the list of the first 500 super-
abundant numbers in [6] that do not satisfy Robin’s inequality (2) are 2, 4, 6, 12, 24, 36, 48,
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60, 120, 180, 240, 360, 720, 840, 2520, 5040. So as a direct corollary of the above theorems we
have

σ(n)

eγ n log log n
< 1 +

0.6483

eγ(log log M)2
= 1.013617,

for n ≥ 5041, where M is the superabundant number recorded above.
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