
Asymmetric Traveling Salesman Path and
Directed Latency Problems∗

Zachary Friggstad† Mohammad R. Salavatipour‡ Zoya Svitkina§

April 3, 2013

Abstract

We study integrality gaps and approximability of three closely related problems on directed
graphs with edge lengths that satisfy the triangle inequality. Given two specified vertices s and
t, two of these problems ask to find an s-t path in the graph visiting all other vertices. In the
asymmetric traveling salesman path problem (ATSPP), the objective is to minimize the total
length of this path. In the directed latency problem, the objective is to minimize the sum of the
latencies of the vertices, where the latency of a vertex v is the distance from s to v along the
path. The third problem that we study is the k-person ATSPP, in which the goal is to find k
paths of minimum total cost from a source vertex s to a sink vertex t such that every vertex is
on at least one of these paths.

All of these problems are NP-hard. The best known approximation algorithms for ATSPP
had ratio O(log n) [9,11] until the very recent result that improves it to O(log n/ log log n) [4,11].
However, the best known bound on the integrality gap of any linear programming relaxation
for ATSPP was only O(

√
n). For directed latency, the best previously known approximation

algorithm has a guarantee of O(n1/2+ε), for any constant ε > 0 [28]. We present a new algorithm
for the ATSPP problem that has an approximation ratio of O(log n), but whose analysis also
upper bounds the integrality gap of the standard LP relaxation of ATSPP by the same factor.
This solves an open problem posed in [9]. We then pursue a deeper study of this linear program
and its variations, which leads to an O(log n)-approximation for the directed latency problem,
a significant improvement over previously-known results. Our result for k-person ATSPP is
an O(k2 log n) approximation that bounds the integrality gap of an LP relaxation by the same
factor. We are not aware of any previous work on this problem.

1 Introduction

Let G = (V,E) be a complete directed graph on a set of n vertices and let d : E → R+ be a
cost function (also referred to as length or distance) satisfying the directed triangle inequality:

∗A preliminary version of this paper appeared in the Proceedings of 21st Annual ACM-SIAM Symposium on
Discrete Algorithms
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Supported by NSERC and iCORE scholarships. Most of this work was done while the author was studying at the
University of Alberta.
‡Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. Supported by

NSERC and an Alberta Ingenuity New Faculty award.
§Google, Inc. Mountain View, California, USA. Most of this work was done while the author was at the University

of Alberta and supported by Alberta Innovates.

1

duw ≤ duv + dvw for all u, v, w ∈ V 1. However, d is not necessarily symmetric: it may be that
duv 6= dvu for some vertices u, v ∈ V . In the Asymmetric Traveling Salesman Path Problem
(ATSPP), given such a graph G = (V,E) along with two distinct vertices s, t ∈ V , the goal is to
find a Hamiltonian path (a path containing all vertices of V) s = v1, v2, . . . , vn = t with minimum
total length

∑n−1
j=1 dvjvj+1 . This is a variant of the classical Asymmetric Traveling Salesman Problem

(ATSP), where the goal is to find a minimum-cost cycle containing all the vertices. In k-person
ATSPP we are also given an integer k ≥ 1 and the goal is to find k paths from s to t such that
every vertex lies on at least one path and the sum of path lengths is minimized.

Related to ATSPP is the directed latency problem. On the same input as ATSPP, the goal is to
find a Hamiltonian path s = v1, v2, . . . , vn = t that minimizes the sum of latencies of the vertices.
Here, the latency of a vertex vi in the path is defined as

∑i−1
j=1 dvjvj+1 . This objective is quite

natural as it can be thought of as the total or average waiting time of clients who are waiting to be
served by a repairman. There are possible variations in the problem definition, such as asking for
a cycle instead of a path, or specifying only s but not t, but they easily reduce to the version that
we consider. Other names used in the literature for this problem are the deliveryman problem [26]
and the traveling repairman problem [1].

The assumption of triangle inequality can be eliminated from the problem formulations that we
consider if one does not require that each vertex be visited exactly once, and instead allow walks
that can pass through the same vertex multiple times. The latency of a vertex v in this case is
defined as the distance along the walk from s to the first occurrence of v. The version of a problem
on a directed graph with non-negative edge costs can be reduced to one satisfying the directed
triangle inequality by assigning new edge costs to be the lengths of the corresponding shortest
paths in the original graph (a.k.a. shortest path metric completion).

1.1 Related work

Both ATSPP and the directed latency problem are closely related to the classical metric Traveling
Salesman Problem (TSP), which asks to find the cheapest Hamiltonian cycle in a complete undi-
rected graph with nonnegative edge costs [18,24] that satisfy the triangle inequality duv ≤ duw+dvw.
Though TSP is NP-hard, the well-known algorithm of Christofides has an approximation ratio of
3/2 [10]. Later the analysis in [31, 33] showed that this approximation algorithm bounds the inte-
grality gap of a well-known linear programming relaxation for TSP known as the Held-Karp LP. On
the other hand, the integrality gap of this LP relaxation is known to be at least 4/3. Furthermore,
for all ε > 0, approximating TSP within a factor of 220/219−ε is NP-hard for any constant ε > 0 [29].

Hoogeveen adapted Christofides’ heuristic to the problem of finding Hamiltonian paths [19].
Specifically, he obtains a 3/2-approximation for the problems of finding the cheapest Hamiltonian
path or finding the cheapest Hamiltonian path that starts at a given vertex. When two distinct
vertices s, t are given, he describes an efficient algorithm that finds a Hamiltonian path with end-
points s and t whose cost is at most 5/3 times the minimum-cost Hamiltonian s-t path. This has
been improved very recently to a (1 +

√
5)/2-approximation [2].

In contrast to TSP, no constant-factor approximation for ATSP is known. The current best
approximation for ATSP is the recent result of Asadpour et al. [4], which gives an O(log n/ log logn)-
approximation algorithm. It also upper-bounds the integrality gap of the Held-Karp LP relaxation

1Often the notation uv is reserved for undirected edges, whereas (u, v) is used for directed edges. Apart from the
introduction, all graphs in this paper are directed, so we often use uv to refer to a directed edge as well to avoid
clutter.

2

for ATSP by the same factor. Previous algorithms guarantee a solution of cost within O(log n)
factor of optimum [11, 13, 21, 22]. The algorithm of Frieze et al. [13] is shown to upper-bound
the Held-Karp integrality gap by log n in [32], and a different proof that bounds the integrality
gap of a slightly weaker LP by O(log n) is obtained in [27]. The best known lower bound on the
Held-Karp integrality gap is 2-o(1) [7], and tightening these bounds remains an important open
problem. Finally, ATSP is NP-hard to approximate within 117/116− ε [29].

Approximation algorithms for ATSPP, the path version of ATSP, have only recently been stud-
ied. The first one was an O(

√
n) approximation algorithm by Lam and Newman [23], which

was subsequently improved to O(log n) by Chekuri and Pal [9]. Feige and Singh [11] improved
upon this guarantee by a constant factor and also showed that the approximability of ATSP and
ATSPP are within a constant factor of each other, i.e. an α-approximation for one implies an O(α)-
approximation for the other. Combined with the result of [4], this implies an O(log n/ log log n)
approximation for ATSPP. However, none of these algorithms bound the integrality gap of any LP
relaxation for ATSPP. The integrality gap of an LP relaxation was considered by Nagarajan and
Ravi [28], who showed that it is at most O(

√
n).

To the best of our knowledge, the asymmetric path version of the k-person problem has not
been studied previously. However, some work has been done on its symmetric version, where the
goal is to find k rooted cycles of minimum total cost (e.g., [14]).

Both the directed latency problem and the undirected latency problem (when duv = dvu for each
u, v ∈ V) are NP-hard because an exact algorithm for either of these could be used to efficiently
solve the directed or undirected Hamiltonian Path problem, respectively. The first constant-factor
approximation for undirected latency was developed by Blum et al. [5]. This was subsequently
improved in a series of papers from 144 to 21.55 [16], then to 7.18 [3] and ultimately to 3.59 [8].
Blum et al. [5] also observed that there is some constant c > 1 such that there is no c-approximation
for undirected latency unless P = NP. Recently, Chakrabarty and Swamy [6] introduced an LP
relaxation for the undirected latency problem whose value can be efficiently approximated within
a (1 + ε)-factor for any constant ε > 0 and proved an upper bound of 10.78 on the integrality
gap of this relaxation. For directed latency, Nagarajan and Ravi [28] gave an O((ρ+ log n)nε ε−3)
approximation algorithm for any 1

logn < ε < 1 that runs in time nO(1/ε), where ρ is the integrality

gap of an LP relaxation for ATSPP. Using their O(
√
n) upper bound on ρ, they obtained a guarantee

of O(n1/2+ε), which was the best approximation ratio known for this problem before our present
results.

1.2 Our results

In this paper we study the ATSPP, the k-person ATSPP, and the directed latency problem. For
all of these we use the following linear program, LP(α), with different values for the parameter α,
0 < α ≤ 1 (there is a slight modification for k-person ATSPP to be mentioned later). A natural
LP relaxation for ATSPP is LP(α) with α = 1, where δ+(·) denotes the set of outgoing edges from
a vertex or a set of vertices, and δ−(·) denotes the set of incoming edges. A variable xe indicates
that edge e is included in a solution. In an integer solution (i.e. xuv ∈ {0, 1} for all uv ∈ E),
constraints (1) ensure that the number of arcs entering u is equal to the number of arcs exiting
u for any u ∈ V \ {s, t}. Constraints (2) say that one arc exits s and one arc enters t. Similarly,
constraints (3) say that no arcs enter s or exit t. Finally, constraints (4) say that any nonempty
subset of V \ {s} must have at least one arc uv entering it. Thus, integer feasible solutions to the
LP correspond to Eulerian s-t walks that include all vertices and do not enter s or exit t. Such a

3

min
∑
e∈E

dexe (LP(α))

s.t. x(δ+(u)) = x(δ−(u)) ∀u ∈ V \ {s, t} (1)

x(δ+(s)) = x(δ−(t)) = 1 (2)

x(δ−(s)) = x(δ+(t)) = 0 (3)

x(δ−(Y)) ≥ α ∀Y ⊂ V, Y 6= ∅, s /∈ Y (4)

xe ≥ 0 ∀e ∈ E

walk can be transformed to a Hamiltonian path from s to t of no greater cost by bypassing repeated
vertices using the triangle inequality. Thus, a valid ATSPP LP relaxation would follow by including
constraints x(δ+(u)) = 1 for all u ∈ V \ {s, t}, whereas in LP(α) only constraints x(δ+(u)) ≥ α
are implied by constraints (4). However, this weaker LP relaxation will be more useful to us as we
consider it for different values of α.

In Section 2 we present our algorithm for ATSPP and prove that the integrality gap of LP(α = 1)
is O(log n).

Theorem 1.1 There is a polynomial time algorithm for the ATSPP problem that finds a solution
whose cost is at most (2 log n+ 1) times2 the optimum value of LP(α) with α = 1.

We note that, despite bounding the integrality gap, our algorithm is actually combinatorial and
does not require solving the LP.

Next, we study a generalization of the ATSPP, namely the k-person asymmetric traveling
salesman path problem. In Section 3 we prove the following theorem using an algorithm that can
be seen as a generalization of the algorithm used in the proof of Theorem 1.1. The LP relaxation
we use for k-person ATSPP is the nearly identical to LP(α = 1), except we use δ+(s) = δ−(t) = k
instead.

Theorem 1.2 There is a polynomial time O(k2 log n) approximation algorithm for the k-person
ATSPP. Moreover, the integrality gap of the LP relaxation for it is bounded by the same factor.

Our algorithm for the directed latency problem requires a more detailed study of LP(α) for
general values 0 < α ≤ 1. We strengthen the result of Theorem 1.1 by extending it to any
α ∈ (12 , 1]. This captures the LP of [28], which has α = 2

3 , and is also used in our algorithm for the
directed latency problem. We prove the following theorem in Section 4.

Theorem 1.3 For any rational 1
2 < α ≤ 1, there is a polynomial time algorithm that finds a

Hamiltonian path from s to t that costs at most 6 logn+3
2α−1 times the value of LP(α).

It is worth observing that this theorem, together with the results of [28], implies a polynomial-
time O(nε)-approximation for the directed latency problem for any constant ε > 0. Furthermore,
choosing ε = 2

logn gives an O(log4 n)-approximation that runs in quasi-polynomial time nO(logn).

2All logarithms in this paper are base 2.

4

However, it seems difficult to adapt their approach to obtain an approximation algorithm that
both runs in polynomial time and guarantees a polylogarithmic bound on the approximation ratio.
Specifically, to obtain a polylogarithmic approximation guarantee using their algorithm with the
improved bound on the integrality gap of LP(α), we have to guess a polylogarithmic number of
intermediate vertices of the path. Though parts of our algorithm are motivated by steps in the
directed latency algorithm in [28], we will use a different approach to obtain a polynomial-time
approximation.

Next we consider LP(α) for α ∈ (0, 12]. If we allow α ≤ 1
2 then LP(α), as a relaxation of ATSPP,

has an unbounded integrality gap. However, we also prove the following theorem in Section 4.

Theorem 1.4 For any positive integer k, there is a polynomial time algorithm that finds a collec-
tion of at most k · log n paths from s to t, of total cost at most k · log n times the value of LP (α)
with α = 1

k , such that each vertex of G appears on at least one of these paths.

Given these results concerning LP(α), we introduce and study a particular LP relaxation for
the directed latency problem in Section 5. We improve upon the O(n1/2+ε)-approximation of [28]
substantially by proving the following:

Theorem 1.5 A solution to the directed latency problem can be found in polynomial time that has
cost no more than O(log n) times the value of LP relaxation (LatLP), which is a lower bound on
the integer optimum.

The proof of Theorem 1.5 relies heavily on many of the constraints in LP relaxation (LatLP). So,
for convenience, we present this LP in Section 5 rather than in this introduction. We wish to point
out that even though (LatLP) has exponentially many constraints, it can be solved in polynomial
time using the ellipsoid method. We also note that this seems to be the first time that a bound
is placed on the integrality gap of any LP relaxation for the minimum latency problem, even in
the undirected case. As mentioned earlier, there has been some recent work on LP relaxations for
undirected latency in [6] where they introduce a relaxation and prove a constant upper bound on
its integrality gap.

1.3 Previous Approaches to Latency Problems and Our Techniques

Many of the known undirected latency approximation algorithms can be viewed as refinements of
the following basic approach. Suppose we know, for each 1 ≤ k ≤ n, the cheapest path Pk starting
at s that visits precisely k vertices (the endpoints of these paths are not fixed). Then the total cost
of all paths Pk is a lower bound on the latency of the optimum path since, for each 1 ≤ k ≤ n, the
subpath of a minimum latency path starting at s and visiting k vertices must have cost at least
that of Pk. Consider a subsequence 1 = k1 < k2 < . . . < kp = n of indices (from 1, . . . , n) having
the property that ki+1 is the largest index such that the cost of Pki+1

is at most twice the cost of
Pki+1. Construct the final path by concatenating the Pki ’s in increasing order of index, where by
concatenating Pki+1

to Pki we mean that after following Pki , we return to s before following Pki+1
.

The cost of moving from the end of some Pki back to s can be bounded by the cost of Pki itself
(in undirected graphs). Furthermore, since the costs of the Pki increase geometrically one can argue
that the total distance travelled by the final path the moment that Pki is completely traversed is
within a constant factor of the length of Pki ; let `i denote this distance. Finally, it is not too hard
to see that the first k2 vertices on this path (apart from s) have latency at most `1, the next k2−k1

5

vertices have latency at most `2, and so on; so the total latency of the path is
∑p

i=2(ki − ki−1) · `i,
which is within a constant factor of the total cost of all paths Pk. Of course, finding the paths Pk
is NP-hard, but a constant-factor approximation for this problem can be used at the expense of a
constant factor loss in the overall approximation ratio for the undirected latency problem.

It is also useful to review the approach in [28] for directed latency. For a fixed value k, they
guess the k vertices F := {v1, . . . , vk} such that the length of the s-vi subpath of the optimal

solution is a ni/k

n -fraction of the latency of the optimal solution. They then present an LP that
contains a variable yi,v for each v ∈ V \F where yi,v = 1 indicates that v should lie between vi and
vi+1 in the optimum path. They also use a vi − vi+1 flow fi for each i and use cut constraints to
ensure, for each v ∈ V \F , that at least yi,v of this vi−vi+1 flow passes through v. First, they argue

that for an appropriate guess for the set F , the associated LP relaxation has value at most 2n
1
k

times the latency of the optimal path. They then round these flows using their bound of O(
√
n)

on the integrality gap for LP(α = 2
3) to obtain vi− vi+1 paths where each vertex v appears on such

a path. Concatenating these paths yields the final path which, by the geometric grouping of the
latencies of the vertices in F , yields a path with latency O(n(1/2+1/k)k3) (the extra k3 factor is lost
in the details of the analysis).

Our approach for directed latency borrows some ideas from both the known undirected algorithm
and the algorithm in [28] mentioned above. However, there are some significant differences. Instead
of computing an approximate solution to the cheapest path Pk starting at s that visits k vertices,
we begin by considering an s-v flow fv of value 1 for each vertex v in the LP. In an integral solution,
this can be thought of as an s-v path. We also consider ordering variables xuv where the idea is
that xuv = 1 means u appears before v. Then, for each distinct u, v, the s-v flow must send at
least xuv flow across any u-v cut which captures the fact that an integral solution must have the
s-v path visiting u if u appears before v on the final s-t path. To round this LP, we group the
vertices v geometrically according to the cost of their fv flow. In each group, we would like to
use our ATSPP integrality gap bound to construct an s-v path from the flow fv for some v in the
group that visits all other vertices in the group. Following these paths in increasing order of their
length then provides an O(log n) approximation for the directed latency problem if we can find a
good bound on the cost of travelling from the end of one path to the start of the next path.

We note that this is not a big problem in the undirected latency problem since we can travel
from the end of a path back to s with cost at most that of the path itself. In the directed setting, we
bound this cost this by introducing a refinement of the xuv variables and adding certain constraints
to ensure that the end of any path appears to a significant extent (according to the ordering
variables) before a vertex that appears early in the next path. There are other technical hurdles
that we address in Section 5 to make this approach work. One such problem is that the s-v flow
fv only guarantees the amount of flow sent over any u-v cut is xuv. It might be that xuv is close
to (or even equal to) 1/2 for many vertices u so the fv can only be viewed as a solution to LP(α)
for some α ≥ 1/2 which is why we require the integrality gap results for values α smaller than 1.

1.4 Outline of the Paper

To summarize, in Section 2 we bound the integrality gap of LP relaxation (LP(α)) of ATSPP
with α = 1 by O(log n). In Section 3, the ATSPP algorithm is extended to k-person ATSPP and
Theorem 1.2 is proven. We prove the supporting results in Theorems 1.3 and 1.4 in Section 4. The
directed latency algorithm is presented in Section 5 where we prove Theorem 1.5. Section 6 then

6

concludes this paper.

2 Integrality gap of relaxation LP(α = 1) for ATSPP

We show that LP relaxation LP(α) of ATSPP with α = 1 has integrality gap O(log n). Let x∗ be
an optimal fractional solution, and let L be its cost. We define a path-cycle cover on a subset of
vertices W ⊆ V containing s and t to be the union of one s-t path and zero or more cycles, such
that each v ∈ W occurs in exactly one of these subgraphs. The cost of a path-cycle cover is the
total cost of its edges.

Our approach is an extension of the algorithm by Frieze et al. [13], analyzed by Williamson [32]
to bound the integrality gap for ATSP. That algorithm finds a minimum-cost cycle cover on the
current set of vertices, chooses an arbitrary representative vertex for each cycle, deletes other
vertices of the cycles, and repeats until the cycle cover contains only one cycle. The union of
all cycle covers over all iterations is a strongly connected Eulerian graph which, by the triangle
inequality, can be transformed into a Hamiltonian cycle of no greater cost. As this is repeated at
most log n times, and the cost of each cycle cover is at most the cost of the LP solution, the upper
bound of log n on the integrality gap is obtained. In our algorithm for ATSPP, the analogue of
a cycle cover is a path-cycle cover (also used in [23]), whose cost is at most the cost of the LP
solution (Lemma 2.3). At the end we combine the edges of O(log n) path-cycle covers to produce a
Hamiltonian path. However, the whole procedure is more involved than in the case of ATSP cycle.
For example, we don’t choose arbitrary representative vertices, but use an amortized analysis to
ensure that each vertex only serves as a representative a bounded number of times. Though it will
be convenient for our analysis to choose the representatives more carefully, we do not know if this
is necessary.

In the proof of Lemma 2.3 below, we make use of the following splitting-off theorem, as is
also done in [27], where splitting off edges uv and vw refers to replacing these edges with the
edge uw (unless u = w, in which case the two edges are just deleted). The directed connectivity
λ(u, v) between two vertices u and v of a directed graph G is defined as the maximum number of
edge-disjoint directed paths from u to v in G.

Theorem 2.1 (Frank [12, Theorem 4.3] and Jackson [20, Theorem 3]) Let G = (V,E) be
a Eulerian directed graph which may contain parallel edges but no loops. Then for any vw ∈ E there
exists an edge uv ∈ E such that splitting off uv and vw does not reduce λ(y, z) for any y, z ∈ V \{v}.

We next consider the following linear program, called LP(α,W), which differs from LP(α) in
that it is defined only on a subset of vertices W ⊆ V and does not include constraints (4) for any
but the singleton sets. Let EW ⊆ E be the set of edges with both endpoints in W .

min
∑
e∈EW

dexe (LP(α,W))

s.t. x(δ+(u)) = x(δ−(u)) ≥ α ∀u ∈W \ {s, t} (5)

x(δ+(s)) = x(δ−(t)) = 1 (6)

x(δ−(s)) = x(δ+(t)) = 0 (7)

xe ≥ 0 ∀e ∈ EW

7

Lemma 2.2 For any rational α ∈ [0, 1] and any subset W ⊆ V with s, t ∈W , there exists a feasible
solution to LP(α,W) of cost no more than the cost of an optimal solution to LP(α).

Proof. As all parameters of LP(α) are rational, it has a rational optimal solution. Let {xe : e ∈ E}
be such a solution, and let Q be a common denominator of all xe’s. We construct a directed graph
H = (V, F) on the set of vertices V by including Q ·xuv parallel edges from u to v, for any u, v ∈ V ,
as well as Q edges from t to s. The resulting graph H is Eulerian, which is ensured by constraints
(1) of LP(α) for vertices other than s and t, and by constraints (2)-(3) and the extra Q edges for
s and t.

We now apply splitting off to vertices of V \W in H until all of them are disconnected from W .
In particular, while there is an edge vw ∈ F such that v ∈ V \W , find an edge uv as guaranteed
by Theorem 2.1, and modify H by splitting off uv and vw. The graph remains Eulerian after
this operation, so the process can continue until vertices outside of W have no more incoming or
outgoing edges.

Let x′uv be defined as the number of edges from u to v in H divided by Q, except for x′ts, which
is set to zero. We argue that x′ is a feasible solution to LP(α,W) whose cost is no more than the
cost of x for LP(α). Let u be any vertex in W \ {s, t}. We have x(δ+(u)) = x(δ−(u)) because H
remained Eulerian. Consider the original directed connectivity λ(s, u) in H. By Menger’s theorem,
λ(s, u) = min{δ−(Y) : u ∈ Y ⊆ V \ {s}}. But from constraints (4) and the construction of H, this
is at least α ·Q. By the guarantee of Theorem 2.1, λ(s, u) does not decrease during the splitting-off
process, which implies that the in-degree of u also remains at least α ·Q. So x′(δ−(u)) ≥ α, showing
that x′ satisfies constraints (5) of LP(α,W). The only way that the in- or out-degree of a vertex
w ∈ W can change during a splitting-off process is if the edges wv and vw are split off for some
vertex v /∈ W . However, vertices s and t do not participate in such 2-cycles with vertices outside
of W , so their degrees in H never change. Thus, constraints (6) and (7) are satisfied for x′.

The cost of x′ is no more than that of x because of triangle inequality. If we assign the costs de
to edges of H, we can see that splitting-off does not increase the total cost: whenever a new edge
uw is introduced, it replaces two old edges uv and vw, whose cost, by the triangle inequality, is
the same or higher as the cost of uw. Now, the original cost of H, not counting the ts edges, is Q
times the cost of x as a solution to LP(α), and the cost of x′ as a solution to LP(α,W) is at most
the final cost of H (also not counting the ts edges) divided by Q. �

A path-cycle cover of minimum cost can be found by a combinatorial algorithm, using a reduc-
tion to minimum-cost perfect matching, as explained in [23]. We use the following lemma to bound
its cost.

Lemma 2.3 For any subset W ⊆ V that includes s and t, there is a path-cycle cover of W of cost
at most the cost of LP(α = 1,W).

Proof. LP(α = 1,W) is equivalent to a circulation problem on a network (which can be seen
by identifying s and t), and therefore is integral (see [30, p. 207] or the proof of Claim 1 in [27]).
In particular, it has an integer optimal solution. By Lemma 2.2, the cost of this solution is at
most L. In principle, this integer solution can have x(δ+(u)) > 1 for some vertices u. In this
case we find a path-cycle cover of no greater cost as follows. Consider the Eulerian graph formed
by adding a ts edge to the integer solution to LP(1,W) and find a Euler tour for each of its
components. Shortcut these tours over extra copies of vertices that appear more than once, which,
by the triangle inequality, does not increase the cost. Note that the edge ts is not involved in such

8

a shortcut since the in and out degree of both s and t is exactly 1 in the Eulerian graph. Finally,
removing the edge ts produces a path-cycle cover of W of cost at most L. �

We next present our algorithm for approximating ATSPP, Algorithm 1. For convenience of
presentation, we equate an integer flow to a directed multi-graph that has an edge uv for each unit
of flow assigned to the edge uv. In the same way, we regard an integer circulation as equivalent to
a directed Eulerian multigraph. Adding two such graphs (flows, circulations) that are defined on
the same set of vertices means taking disjoint union of their edges.

Algorithm 1 Asymmetric Traveling Salesman Path

1: Let a set W ← V ; integer labels lv ← 0 for all v ∈ V ; flow F ← ∅ and circulation H ← ∅
2: for 2blog2 nc+ 1 iterations do
3: Find an integer minimum-cost s-t path-cycle cover F ′ on W
4: F ← F + F ′ . F is acyclic before this operation
5: Find a path-cycle decomposition of F , with cycles C1...Ck and paths P1...Ph, such that⋃

i Pi is acyclic
6: for each strongly connected component A of

⋃
j Cj do . A is a circulation

7: For each vertex u ∈ A, let du be the in-degree of u in A
8: Find a “representative” vertex r ∈ A minimizing lr + dr
9: F ← F −A . subtract flows

10: for each w ∈ A, w 6= r, and for each path Pi
11: if w ∈ Pi then modify F by shortcutting Pi over w
12: Remove all vertices in A, except r, from W . they don’t participate in F anymore
13: H ← H +A . add circulations
14: lr ← lr + dr
15: end for
16: end for
17: Let P be an s-t path consisting of vertices in W in the order found by topologically sorting F

. F is an acyclic flow on the vertices W
18: for every connected component X of H of size |X| > 1 do
19: Find a Euler tour of X, shortcut over vertices that appear more than once
20: Incorporate the resulting cycle into P using a shared vertex
21: end for
22: return P . P is a Hamiltonian s-t path

The basic idea of our algorithm is adapted from the first part of the O(
√
n)-approximation of

Lam and Newman [23]: find an integer path-cycle cover, select a representative vertex for each cycle,
delete the other cycle vertices, and repeat until we can construct a relatively cheap Hamiltonian
path on the remaining vertices. Then, the deleted vertices can be added to this path using edges
of the deleted cycles in a manner similar to Frieze et al. for ATSP [13]. Our approach is a bit more
involved in that a representative is selected for a subgraph more general than a simple cycle.

The algorithm maintains several structures that help to keep track of its progress. The set
of vertices W , which is initially equal to V , contains the vertices that have not been deleted yet.
Circulation H contains the edges of the subgraphs that have been removed, and which will be used
in the last stage to reconnect the deleted vertices to the final path. Flow F consists of “leftover”
acyclic path-cycle edges from previous iterations. In each iteration, a new path-cycle cover is added

9

to F , and then the cyclic parts of F are removed and transferred to H. Components that can be
removed from F are Eulerian subgraphs. In order to be able to reconnect them at the end, a
representative vertex, which is not deleted from F with the rest of its component A, is chosen for
each one. The labels lv are used to load-balance the number of times that vertices are used as
representatives.

At each iteration of the main for-loop, we find an integer path-cycle cover F ′ over W (as
guaranteed by Lemma 2.3) and add it to F . Now the flow (multi-graph) F might have some cycles.
We find a path-cycle decomposition of F , say C1, . . . , Ck are the cycles and P1, . . . , Ph are the
paths in this decomposition. By finding and removing all the cycles first, and then finding the path
decomposition, we can ensure that the union of paths of this decomposition is acyclic. Our goal is
to keep one representative for each strongly connected component A of

⋃
j Cj and delete the rest of

those vertices from W . Thus, when we eventually find an s-t path that goes through the remaining
vertices of W , and in particular the representative vertex of A, we can expand this path to visit
all the vertices of A as well, and hence obtain an s-t path spanning all of V . By load-balancing
using labels, we ensure that after 2blog nc+ 1 iterations, each surviving vertex has participated in
the acyclic part of the path-cycle covers at least blog nc+ 1 times. Using this fact and a technique
of [28], we show that by the end of the main loop, F contains enough edges to form a spanning
s-t path over all the surviving vertices of W . Then we expand this s-t path at the representative
vertices by adding the subpaths obtained from the cyclic part, H, of the union of path-cycle covers.

Lemma 2.4 During the course of the algorithm, for each v ∈ V , lv ≤ blog nc.

The idea of the proof is, as the algorithm proceeds, to maintain a forest on the set of vertices V ,
such that the number of vertices in a subtree rooted at any v ∈ V is at least 2lv . The lemma then
follows because the number of vertices in a subtree cannot exceed n. We first prove an auxiliary
claim.

Claim 2.5 In each component A found by Algorithm 1 on line 6, there are two distinct vertices x
and y such that dx = dy = 1.

Proof. Let F̄ be the value of F at the start of the current iteration of the outside loop, i.e.
before F ′ is added to it on line 4. F̄ is acyclic, because during the course of the loop, all cycles of
F are subtracted from it. So A is a union of cycles, formed from the sum of an acyclic flow F̄ and
a path-cycle cover F ′, which sends exactly one unit of flow through each vertex.

Consider a topological ordering of vertices based on the flow F̄ , and let x and y be the first and
last vertices of A, respectively, in this ordering. As A always contains at least two vertices, x and
y are distinct. Since x and y participate in some cycle(s) in A, their in-degrees are at least 1. We
now claim that the in-degree of x in A is at most 1. Indeed, since all other vertices of A are later
than x in the topological ordering, it cannot have any flow coming from them in F̄ . So the only
incoming flow to x can be in F ′. But since F ′ sends a flow of exactly one unit through each vertex,
the in-degree of x in A is at most one. A symmetrical argument can be made for y, showing that
its out-degree in A is at most one. But since A is a union of cycles, every vertex’s in-degree is equal
to its out-degree, and the in-degree of y is also at most 1. �

Proof of Lemma 2.4. As the algorithm proceeds, let us construct a forest on the set of vertices
V . Initially, each vertex is the root of its own tree. We maintain the invariant that W is the set of
tree roots in this forest. For each component A that the algorithm considers, and the representative

10

vertex r found on line 8, we attach the vertices of A, except r, as children of r. Note that the
invariant is maintained, as these vertices are removed from W on line 12. The set of vertices of each
component A found on line 6 is always a subset of W , and thus our construction indeed produces
a forest.

We show by induction on the steps of the algorithm that if a vertex has label l, then its subtree
contains at least 2l vertices. Thus, since there are n vertices total, and the labels are all integer
values, no label can exceed blog2 nc. At the beginning of the algorithm, all labels are 0, and all trees
have one vertex each, so the base case holds. Now consider some iteration in which the label of
vertex r ∈ A is increased from lr to lr + dr. By Claim 2.5, there are vertices x, y ∈ A (possibly one
of them equal to r) with dx = dy = 1. Since r minimizes lv + dv among all vertices v ∈ A, we have
that lx + dx ≥ lr + dr and ly + dy ≥ lr + dr, and thus lx ≥ lr + dr − 1 and ly ≥ lr + dr − 1. Thus, by
the induction hypothesis, the trees rooted at x and y each have at least 2lr+dr−1 vertices. Because
we update the forest in such a way that r’s new tree contains all the vertices of trees previously
rooted at x and y, this tree now has at least 2 · 2lr+dr−1 = 2lr+dr vertices. �

Lemma 2.6 At the end of the algorithm’s main loop, the flow in F passing through any vertex
v ∈W is equal to 2blog nc+ 1− lv, and thus (by Lemma 2.4) is at least blog nc+ 1.

Proof. There are 2blog nc+ 1 iterations, each of which adds one unit of flow through each vertex
v ∈ W . We now claim that, by the end of the algorithm, for a vertex v ∈ W , the amount of flow
passing through it that has been removed from F is equal to its label, lv. Flow is removed from
v only if v becomes part of some component A. Now, if it is ever part of A, but not chosen as a
representative on line 8, then it is removed from W . Thus, we are only concerned about vertices
that are chosen as representatives every time that they are part of A. Such a vertex has flow dv
going through it in A, which is the amount subtracted from F . But since this is also the amount
by which its label increases, the lemma follows. �

Lemma 2.7 When Algorithm 1 reaches line 17, F contains a spanning s-t path on the set of
vertices W .

Proof. Recall that F is acyclic at this point in the algorithm, and let P be an ordering of vertices
in W obtained by a topological sort of F . We show that P is actually a path in F , i.e. that there
is an edge between each pair (u, v) of consecutive vertices of P . This is similar to an argument
used in [28]. Suppose that we find a flow decomposition of F into s-t paths. There are at precisely
2blog nc+ 1 such paths, and, by Lemma 2.6, each vertex of W participates in at least blog nc+ 1,
or more than half, of them. This means that any two consecutive vertices in P , such as u and v,
must share a path, say p, in this decomposition. Because v appears later than u in the topological
order, v must come after u in p. Moreover, we claim that in p, v is the immediate successor of u.
If not, suppose that there is a vertex w that appears between u and v in p. But this means that in
the topological ordering, w will appear after u and before v, which contradicts the fact that they
are consecutive in P . So u and v are neighbors on p, which means that F contains an edge uv. �

Lemma 2.8 Algorithm 1 finds a Hamiltonian s-t path in the graph G whose cost is at most the
sum of costs of the 2blog nc+ 1 path-cycle covers computed by the algorithm.

Proof. As the algorithm proceeds, the total cost of edges in F and H never exceeds the cost of
all the path-cycle covers found so far. The edges of the path-cycle covers are either moved from F

11

to H, which does not change the total cost, or a shortcutting operation is performed, which does
not increase the cost due to the triangle inequality. We bound the cost of the final path by the
cost of F and H. By Lemma 2.7, the path P found on line 17 is a subgraph of F , and thus costs
no more than F does. On the other hand, the Euler tours found on line 19 cost no more than the
edges of H. We now show that the algorithm indeed produces a Hamiltonian path and bound the
cost of connecting the components of H to P .

Now we describe how the cycles obtained in Step 19 are incorporated into path P in line 20. At
the end of the main loop, all vertices of V are part of either W or H or both. For every component
X of the second for-loop, assume that C is the cycle obtained over vertices of X on line 19. We
claim that C shares exactly one vertex with W (and thus with P). Note that every component A
added to H contains only vertices that are in W at that time. Moreover, when this is done, all but
one vertices of A are expelled from W (on line 12). So when several components of H are connected
by the addition of A, the invariant is maintained that there is exactly one vertex per component
that is shared with W . Now, suppose that v is the vertex shared by the cycle C and the path P .
On line 20, we incorporate the cycle into the path by following the path up to v, then traversing
the cycle from v to the predecessor of v, then connecting it to the successor of v on the path. So
when all the components of H are incorporated into the path P , all vertices of V become part of
the path. By triangle inequality, the resulting longer path costs no more than the sum of costs of
the old path and the cycles. �

Theorem 1.1 now easily follows from Lemmas 2.2, 2.3 and 2.8.

3 Algorithm for k-person ATSPP

In this section we consider the k-person asymmetric traveling salesman path problem. The LP
relaxation we present for this problem is similar to LP(α), but with x(δ+(s)) = x(δ−(t)) = k for
constraint (2) and x(δ+(S)) ≥ 1 for constraint (4). Similar to path-cycle covers, we define a k-path-
cycle cover on a subset W of V containing s and t to be the union of k s-t paths and zero or more
cycles such that each v ∈ W − {s, t} occurs in exactly one of these subgraphs and neither s nor t
appears on any cycle. Like a path-cycle cover, the minimum-cost k-path-cycle cover can be found
by a combinatorial algorithm by creating k copies each of s and t and using the matching algorithm
described in [23]. Arguments similar to those of Lemmas 2.2 and 2.3 show that a k-path-cycle cover
on any subset W ⊆ V is a lower bound on the value of the LP relaxation for the k-person ATSPP.
Our algorithm constructs a solution that uses each edge of O(k log n) k-path-cycle covers at most
k times, proving a bound of O(k2 log n) on the approximation ratio and the integrality gap.

The algorithm starts by running lines 1-16 of Algorithm 1, except with T = (k + 1)blog nc+ 1
iterations of the loop and finding minimum-cost k-path-cycle covers instead of the path-cycle covers
on line 3. Then it finds k s-t paths in the resulting acyclic graph F , satisfying conditions of
Lemma 3.2 below. The algorithm concludes by incorporating each component of the circulation H
into one of the obtained paths, similar to lines 18-21 of Algorithm 1.

Essentially the same proof as for Lemma 2.4 shows that the labels lv do not exceed blog nc in
our k-person ATSPP algorithm. Lemma 2.6 also generalizes with a nearly identical proof to the
following.

Lemma 3.1 At the end of the algorithm’s main loop, the flow in F passing through any vertex
v ∈W is equal to T − lv, and thus is at least kblog nc+ 1.

12

Proof. The proof is nearly identical to that of Lemma 2.6, except that there are now T =
(k + 1)blog nc+ 1 iterations of the main loop. �

Lemma 3.2 After lines 1-16 of Algorithm 1 are executed with T iterations of the loop on line 2
and finding minimum-cost k-path-cycle covers on line 3, there exist k s-t paths in the resulting
acyclic graph F , such that each edge of F belongs to at most k of them, and every vertex of W is
contained in at least one path. Moreover, these paths can be found in polynomial time.

Proof. We note that the graph F can support kT units of flow from s to t. This is because in
each of the T iterations, k s-t paths are added to the graph, whereas the removal of cycles does not
decrease the amount of flow supported. So F can be decomposed into a set P of kT edge-disjoint
paths from s to t. Moreover, each vertex of F participates in at least kblog nc + 1 of these paths
by Lemma 3.1.

Let K = (W,F ′) be the directed graph on W with uv ∈ F ′ if there is a path from u to v using
only edges in F . Note that K is an acyclic graph where for any u, v, w ∈W such that uv ∈ F and
vw ∈ F , it must also be that uw ∈ F . Let K ′ be the undirected graph obtained by removing the
orientation on each edge in K. Then K ′ is a comparability graph, which is perfect [17].

We claim that the vertices of K ′ can be partitioned into k cliques. Since K ′ is a perfect graph,
the minimum number of cliques required to cover the vertices of K ′ is equal to the size of the
largest independent set. So, we only have to show that there is no independent set of size k + 1.
Suppose, for the sake of contradiction, that I is an independent set of size k+1. By the construction
of K, no two vertices in I can lie on a common path in the path decomposition P of F . Since
each vertex in W lies on at least kblog nc+ 1 of these paths, the number of paths in P is at least
(k + 1)(kblog nc + 1) > k((k + 1)blog nc + 1) = kT . This contradicts |P| = kT and we conclude
that K ′ can be covered with k cliques.

Note that the minimum clique cover of a comparability graph can be found in polynomial time
(eg. [17]). Say k′ ≤ k is the size of the minimum clique cover. To transform these cliques into
paths, we first add both s and t to each of the k′ cliques in the clique cover. If k′ < k, then we
add k − k′ copies of the “clique” {s, t}. Say the resulting cliques are C1, . . . , Ck. Order each Ci
topologically (according to F) to get an s-t path P ′i in K that includes each vertex in Ci. Finally,
let Pi denote the path obtained by replacing each edge of P ′i by its corresponding path in F . Note
that for each Pi, the paths in F corresponding to different edges in P ′i are edge-disjoint since F is
acyclic. Overall, we have that each edge of each path Pi is also an edge in F and each edge in F is
used at most once by any particular path Pi. Thus, the union of the k paths P1, . . . , Pk uses only
edges in F and each edge in F is used by at most k paths. �

Proof of Theorem 1.2. Let L be the cost of a linear programming relaxation for the problem.
The edges of F as well as the edges used to connect the Eulerian components of H to the paths come
from the union of T k-path-cycle covers on subsets of V , and thus cost at most T ·L = O(k log n) ·L.
However, the algorithm may use each edge of F up to k times in the paths of Lemma 3.2, which
makes the total cost of the produced solution at most O(k2 log n) · L. �

13

4 Analysis of relaxed ATSPP LP

4.1 Case α ∈ (1
2
, 1]: Proof of Theorem 1.3

The case of α = 1 follows from Theorem 1.1. Assume that α ∈ (12 , 1) is rational and consider LP(α)

with cost L. We show that Algorithm 1 finds a Hamiltonian s-t path of cost at most 6 logn+3
2α−1 · L,

thus bounding the integrality gap of this LP for ATSPP.
By Lemma 2.2, for any subset W ⊆ V , the cost of an optimal solution to LP(α,W) is at most

L. As we prove in Lemma 4.1 below, this implies that the cost of an optimal solution to LP(1,W)
is at most 3

2α−1 · L. So, by Lemma 2.3, the cost of a minimum path-cycle cover of any subset W
is also bounded by this value. An application of Lemma 2.8 concludes the proof by showing that
Algorithm 1 finds a Hamiltonian s-t path of cost at most (2 log n+ 1) · 3

2α−1 · L.

Lemma 4.1 For any rational value of α ∈ (12 , 1), the optimum value of LP(1,W) is upper-bounded
by 3

2α−1 times the optimum value of LP(α,W).

Proof. Let x be a rational optimal solution to LP(α,W), and let x̂ = x/α be a scaled flow
vector. If we view x̂ as a solution to LP(1,W), we see that constraints (5) and (7) are satisfied,
but constraints (6) are violated, as x̂(δ+(s)) = x̂(δ−(t)) = 1/α > 1. The rest of the proof shows
how to transform x̂ into a feasible solution for LP(1,W).

We interpret x̂ as a flow F of 1/α units from s to t. Find a flow decomposition of F into paths
and cycles, each carrying the same amount of flow (say σ), so that the union of the paths is acyclic.
This is possible for sufficiently small σ, as all quantities involved are rational. Let F = Fp + Fc,
where Fp is the sum of flows on the paths in our decomposition, and Fc is the sum of flows on the
cycles. Observe that we have a total of 1/(ασ) paths.

Let γ be a quantity satisfying 1
2α < γ < 1. For any vertex u such that the amount of Fp flow

going through u is less than γ, shortcut any flow decomposition paths that contain u, so that there
is no more Fp flow going through u. Let U ⊆ W be the set of vertices still participating in the Fp
flow. Then each vertex in U has at least γ units of Fp flow going through it (and so participates in
at least γ/σ such paths), and each vertex in W \U has at least 1−γ units of Fc flow going through
it. We find a topological ordering of vertices in U according to Fp (which is acyclic), and let P be
an s-t path that contains the vertices of U in this topological order.

Claim 4.2 The cost of P is at most 1
2γ−1/α times the cost of Fp.

Proof. The argument for this is similar to the one in the proof of Lemma 2.7. Out of the 1/α
units of flow going from s to t in Fp, each vertex u ∈ U carries at least γ units, which is more
than half of the total amount (as γ > 1

2α). Consider any two consecutive vertices u, v on P , in this
order. Since we have a total of 1

ασ paths in Fp, out of which at least γ/σ contain u and at least

γ/σ contain v, this means that at least 2γ
σ −

1
ασ paths must contain both u and v. On these paths,

u is followed immediately by v, as any other vertex w between u and v would contradict u and v
being consecutive in the topological ordering. Since each such path has a flow of σ, the cost of P
is at most 1/(2γ − 1

α) times the cost of Fp. �

We now define x̃ as a flow equal to one unit of s-t flow on the path P plus 1
1−γ times the flow

Fc. We claim that x̃ is a feasible solution to LP(1,W): there is exactly one unit of flow from s to
t (as Fc consists of cycles not containing s or t); there is flow conservation at all vertices except s

14

2 3

4 5

1 6

1

1

1

1

1

1

1

1

D

Figure 1: Large integrality gap example for LP(α) with α = 1/2. Here, D is an arbitrarily large
integer.

and t; each vertex in U (and thus in P) has at least one unit of flow going through it; and each
vertex in W \ U has at least one unit of flow going through it (as it had at least 1− γ units of Fc
flow). The cost of this solution is at most

1

2γ − 1/α
· cost(Fp) +

1

1− γ
· cost(Fc) ≤ max

(
1

2γ − 1/α
,

1

1− γ

)
· 1

α
L.

If we set γ = 1
3 + 1

3α , which satisfies 1
2α < γ < 1, we see that the cost of x̃ is at most 3

2α−1 · L. �

4.2 Case α ≤ 1
2
: Proof of Theorem 1.4

Consider LP(α) with α = 1
k for some integer k ≥ 2. As a relaxation for the ATSPP problem, this

LP has unbounded integrality gap. For example, let D be an arbitrarily large value and consider
the shortest path metric obtained from the graph in Figure 1. One can verify that the following
assignment of x-values to the arcs is feasible for LP (LP(α)) with α = 1/2. Assign a value of 1/2 to
arcs (1, 2), (3, 2), (3, 6), (1, 4), (5, 4), and (5, 6) and a value of 1 to arcs (2, 3) and (4, 5). Every other
arc is assigned a value of 0. This assignment is feasible for the linear program and has objective
function value 5. On the other hand, any Hamiltonian path from 1 to 6 has cost at least D.

Let L be the cost of the optimal solution to LP(α = 1
k). We present Algorithm 2 that finds

k · log n paths from s to t, containing all the vertices, with total cost of at most k log n · L. It
is similar to our previous algorithms, except the paths and their intermediate vertices are also
removed in each iteration and the representative for a cycle is chosen arbitrarily.

Lemma 4.3 For any subset W ⊆ V that includes s and t, there is a k-path-cycle cover of W with
total cost at most kL.

Proof. By Lemma 2.2, there is a solution to LP(1k ,W) of cost at most L. Now, if we multiply
each xe in this solution by k, we get a feasible solution to a modification of LP(1,W) in which
constraints (6) are replaced with

x(δ+(s)) = x(δ−(t)) = k.

Note that this is the same LP that we considered for the k-person ATSPP. The cost of this solution
is no more than kL. As in the proof of Lemma 2.3, this LP also has an integer optimum, which,
possibly after shortcutting, is exactly a k-path-cycle cover. �

15

Algorithm 2

1: Initialize i← 0, W0 ← V . Let k be an integer parameter.
2: while |Wi| > 2 do . stops when Wi = {s, t}
3: Find a minimum-cost k-path-cycle cover Fi of Wi, with paths Pi and cycles Ci
4: For each cycle C ∈ Ci, choose a representative vertex vC ∈ C
5: Let Wi+1 ← {s, t} ∪ {vC : C ∈ Ci}; i← i+ 1
6: end while
7: Let T ← i be the number of iterations and F ←

⋃T−1
j=0 Fj be the union of all k-path-cycle covers

8: Add kT t-s arcs to F to produce an Eulerian graph and find a Euler tour H on it
9: Delete the t-s arcs from H to produce kT s-t walks

10: Shortcut these walks over repeated vertices and return the resulting paths

Lemma 4.4 The union of k-path-cycle covers F found by Algorithm 2 contains a v-t path for each
v ∈ V .

Proof. We use a simple backward induction to show that for every i,
⋃T−1
j=i Fj contains a v-t

path for each v ∈ Wi. The base case is i = T − 1, where the last k-path-cycle cover found does
not have any cycles (as otherwise there would be a vertex v 6= s, t that remains in Wi+1 after
this iteration). In this case all the vertices of Wi participate in s-t paths. For the induction step,
for 0 ≤ i < T − 1, assume that

⋃T−1
j=i+1 Fj contains a v-t path for every v ∈ Wi+1. Every vertex

v ∈ Wi \Wi+1 participates either in an s-t path in Fi, in which case it is connected to t by this
path, or in a cycle, say C. In this case, the representative vC is in Wi+1, and v is connected to t
by first following the cycle C to vC and then following the vC-t path in

⋃T−1
j=i+1. �

Proof of Theorem 1.4. We observe that |Wi+1 \ {s, t}| ≤ |Wi \ {s, t}|/2 for each i, and so T is
at most log n. This is because each cycle in Ci contains at least two vertices, so for each vC that is
included in Wi+1 \ {s, t} there is at least one vertex in Wi \ {s, t} that is not. Each k-path-cycle
cover adds an equal number of incoming and outgoing arcs to each vertex except for s and t, to
which it adds k outgoing and incoming arcs respectively. Thus, adding kT t-s arcs to F produces
a graph with equal in and out degree at each vertex. By Lemma 4.4 and the simple fact that a
weakly connected graph with equal in and out degree at each vertex, the addition of these t-s arcs
yields an Eulerian graph. By Lemma 4.3, the cost of any Fi is at most kL, so the cost of F and
the final solution is at most kLT ≤ kL log n. �

5 Approximation algorithm for Directed Latency

5.1 Linear programming relaxation

We introduce LP relaxation (LatLP) for the directed latency problem. In LatLP, a variable xuw
indicates that vertex u appears before vertex w on the path. Similarly, xuvw for three distinct
vertices u, v, w indicates that they appear in this order on the path. We do not know if these xuvw
variables are necessary to obtain an LP relaxation with integrality gap O(log n), but they will be
convenient in the analysis of our rounding algorithm. The basic idea why we use these variables is
that we will generate many paths ending at different vertices and we want to somehow transform
these paths into a single path. Roughly speaking, we do this by appending some vertices of one
path to the end of another. The cost of the edge used when concatenating subpaths in this manner

16

can be bounded by using these x variables. Additionally, for every vertex v 6= s, we send one unit
of flow from s to v using variables fv and we call it the v-flow. In particular, fvuw is the amount of
v-flow going through edge uw. Finally, for every vertex v 6= s we use a variable `(v) to represent
the latency of vertex v. The use of variables xuw and fvuw is inspired by a computational evaluation
of a different LP for directed latency in [25]. We emphasize that their results do not place a bound
on the integrality gap of any LP-relaxation.

min
∑
v 6=s

`(v) (LatLP)

s.t. `(v) ≥
∑
uw

duwf
v
uw ∀v (8)

`(v) ≥ [dsu + duw + dwv]xuwv ∀u,w, v : |{u,w, v}| = 3 (9)

`(t) ≥ `(v) ∀v (10)

xuw = xvuw + xuvw + xuwv ∀u,w, v : |{u,w, v}| = 3 (11)

xuw + xwu = 1 ∀u,w : u 6= w (12)

xsu = xut = 1 ∀u /∈ {s, t} (13)∑
w

fvsw =
∑
w

fvwv = 1 ∀v (14)

fvus = fvvu = 0 ∀u, v (15)∑
w

fvwu =
∑
w

fvuw ∀v,∀u /∈ {s, v} (16)∑
w

fvuw = xuv ∀v, u 6= v (17)∑
u/∈Y,w∈Y

fvuw ≥ xyv ∀v ∈ V \ {s}, Y ⊂ V \ {s}, y ∈ Y (18)

xuw, xuwv, f
v
uw ≥ 0 ∀u,w, v

To verify that the value of LatLP is a lower bound for the directed latency problem, we convert
a given spanning s-t path P in G to a solution (x, f, `) of LatLP and prove that it satisfies all the
constraints and has an objective function value equal to the total latency of the path P . We set
fvuw = 1 whenever the edge uw is in P and v occurs after this edge in P , and fvuw = 0 otherwise.
An ordering variable xuw is set to 1 if u occurs before w in P and 0 otherwise; similarly, xuvw is set
to 1 if and only if (u, v, w) occur in this order in P . A latency variable `(v) is set to the distance
from s to v along the path P .

The objective function of LatLP is the sum of `(v) over all vertices, and in our solution is clearly
equal to the latency of P . Constraints (8) say that `(v) is at least the sum of lengths of edges that
precede v in P . Constraints (9) say that if (u,w, v) occur in this order in P , then `(v) must be at
least the sum of lengths of edges su, uw,wv. This holds by triangle inequality. Constraints (10)
say that t has the maximum latency of all vertices; (11) say that u precedes w if and only if every
other vertex v comes either before, between, or after u and w; (12) say that exactly one of u and
w must precede the other, and (13) say that s is the first and t is the last vertex on the path. All

17

of these are clearly satisfied by the solution constructed from a path P .
Constraints (14) ensure that one unit of v-flow leaves s and enters v, and, conversely, (15) ensure

that no v-flow enters s or leaves v. Constraints (16) are the flow conservation constraints for v-flow
at intermediate vertices u. Constraints (17) say that v-flow leaves u if and only if u occurs before
v. Constraints (18) ensure that if a set Y (not containing s) contains some vertex y that comes
before v (i.e. xyv = 1), then at least one unit of v-flow enters Y . In our solution all of these are
satisfied by the one unit of v-flow going from s to v along P .

Lemma 5.1 LatLP can be solved in polynomial time.

Proof. The ellipsoid method can be used to solve LatLP in polynomial time if, given a solution
(x, f, `), we can efficiently find any violated constraints. All constraints can be checked directly,
except for (18), which we check using a minimum cut subroutine. For every v, y ∈ V \{s} we check
that the maximum flow from s to y in the graph G with capacity fvuw for an arc uw is at least xyv.
If there is a constraint of type (18) that is violated for some v, y ∈ V \{s}, then finding a minimum
s-y cut Y (with y ∈ Y) will produce a violated constraint. �

Lemma 5.2 Given a feasible solution to LP (LatLP) with objective value L, we can find another
feasible solution of value at most (1 + 1

n)L in which the ratio of the largest to smallest latency `()
is at most n2.

Proof. Let (x, `, f) be a feasible solution with value L, with `(t) the largest latency value in this
solution. Note that L ≥ `(t). Define a new feasible solution (x, `′, f) by `′(v) = max{`(v), `(t)/n2}.
The total increase in the objective function is at most n · `(t)

n2 ≤ L/n as there are n vertices in total.
Thus, the objective value of this new solution is at most (1 + 1/n)L. �

Using Lemma 5.2 and scaling the edge lengths if needed, we can assume that we have a solution
(x, `, f) satisfying the following:

Corollary 5.3 There is a feasible solution (x, `, f) in which the smallest latency is 1 and the largest
latency is at most n2 and whose cost is at most (1 + 1

n) times the optimum LP solution value.

5.2 Algorithm for Directed Latency

Algorithm 3 uses a solution (x, f, `) to LatLP, that satisfies the properties of Corollary 5.3, to
produce a spanning s-t path that is an approximate solution to the Directed Latency problem. The
idea of the algorithm is to construct s-v paths for several vertices v, such that together they cover
all vertices of V , and then to “stitch” these paths together to obtain one Hamiltonian path. The
algorithm maintains a sequence of vertices T which will form a walk, initially containing only the
source, and gradually adds new parts to it. This is done through operation Append on lines 10, 12,
and 18. To append a path P to T means to add to the end of T the vertices starting from the first
vertex of P that does not already appear in T and continuing until the end of P . For example, if
T = sabc and P = sbdce, the result is T = sabcdce. We will argue that there is an edge with low
cost from the last vertex of T to the first vertex of P that does not appear on T . At the end of the
algorithm, T may contain repeated vertices and so it should be thought of as a walk, but the final
output is an s-t path obtained by keeping only the first occurrence of each vertex in T . Appending
a set of paths to T , as on line 12, means sequentially appending all paths in the set, in arbitrary
order, to T .

18

Algorithm 3 Directed Latency

1: Let (x, f, `) be a solution to LatLP as in Corollary 5.3. Let T be the walk {s}.
2: Partition the vertices into g = blog `(t) + 1c sets V1, . . . , Vg with v ∈ Vi if 2i−1 ≤ `(v) < 2i.
3: for i = 1 to g − 1 do
4: Vi ← Vi \ T . remove the vertices that are covered by T from Vi
5: for j = 1 to 2 do
6: if Vi 6= ∅ then
7: Let vji = argmaxv∈Vi |{u ∈ Vi : xuv ≥ 1

2}| . this maximizes the size of Bj
i below

8: Let Aji = {u ∈ V : x
uvji
≥ 2

3 + 2i−2+j
24 logn }

9: Let Bj
i = {u ∈ Vi : x

uvji
≥ 1

2} . |Bj
i | ≥ (|Vi| − 1)/2

10: Find an s-vji path P ji spanning Aji using Algorithm 1. Append P ji to T .

11: Find a set of s-vji paths Pji spanning Bj
i using Algorithm 2 with k = 2.

12: Append Pji to T .

13: Vi ← Vi \ (Aji ∪B
j
i ∪ {v

j
i }) . size of Vi is at least halved

14: end if
15: end for
16: Let Vi+1 ← Vi+1 ∪ Vi . remaining vertices are carried over to the next set
17: end for
18: Construct an s-t path Pg spanning Vg using Algorithm 1. Append Pg to T .
19: Shortcut T over the later copies of repeated vertices. Output T .

The algorithm groups the vertices into O(log n) different groups V1, . . . , Vg such that two vertices
u, v ∈ Vi in the same group have latency `(u) and `(v) within a factor 2 of each other. It then goes
through these groups, starting with the low-latency ones, and tries to include the vertices from each
group into T . Inside the loops, the algorithm calls Algorithms 1 and 2 to construct spanning paths
on carefully-chosen subsets of Vi and endpoint vji ∈ Vi. The reason that Algorithms 1 and 2 are
used is because of a special connection between LatLP and LP(α) that we show in Lemma 5.4 and
that lets us bound the lengths of the constructed paths. In particular, if there is some vertex v and
a subset of other vertices A such that xuv is large for all u ∈ A, then the v-flow in LatLP resembles
a solution to LP(α) with v playing the role of t. The value of α here is equal to the minimum xuv
in the set. Thus, for the set Aji in the algorithm we are able to use Algorithm 1 with α = 2/3, but

for the set Bj
i we have to resort to Algorithm 2 with k = 2, as here α = 1/2.

The choice of the endpoint vji in each iteration is dictated by the desire to incorporate as many
vertices as possible from the current group Vi into T . A combinatorial argument in the proof of
Lemma 5.12 shows that there is some v ∈ Vi such that at least half of the other vertices u ∈ Vi
have xuv ≥ 1/2. This ensures that at least half of Vi is put into the set Bj

i , which is then added to
T . We could repeat the inner loop a logarithmic number of times to cover all vertices of Vi, but
that would degrade the approximation ratio. Instead, the algorithm uses only two iterations of the
inner loop on line 5, so at most one quarter of the original vertices in Vi remain uncovered. These
vertices are then moved to the next group Vi+1 on line 16.

To analyze the total latency of the solution, we bound separately the lengths of the component
paths found by the algorithm and the cost of connecting them through the append operations. The
length of a path P ji found by Algorithm 1 in an iteration i is bounded by O(2i · log n), and so is

19

the sum of lengths of the paths found by Algorithm 2. So, if all vertices of Vi were part of these
paths and there was no stitching of paths to worry about, then each vertex v would have latency
within an O(log n) factor of `(v) (considering how the buckets Vi were defined), and thus the total
latency would be within this factor of the LatLP value. However, there are a few complications to
be overcome for this approach to succeed.

First, not all vertices of Vi are added to T in iteration i, but some of them are moved to Vi+1.
This effectively doubles the latency of these vertices, but as this happens to only a quarter of them,
the effect on total latency is small. The second complication is that when multiple paths are added
one after the other, the latency of a vertex on a given path increases by the total length of all the
preceding paths. However, because the buckets Vi are defined with geometrically increasing `(v)
values, the sum of path lengths of all the preceding iterations is actually within a constant factor of
the length of the current path, so this does not increase the latency of vertices on it by much (see
Lemma 5.11). Finally, the lengths of edges introduced by the append operations have to be taken
into account. This is done separately for the case of a path P ji (Lemma 5.10) or a path in the set

Pji (Lemma 5.9), but the basic idea is to show that an x variable is large for the two vertices being
connected, and thus the distance between them can be bounded using the constraints of LatLP.
This is where the precise definitions of the sets Aji and Bj

i are important. The connection costs
also scale geometrically with i, and thus increase the total latency only by a constant factor.

5.3 Analysis of the approximation ratio and integrality gap

First we bound the lengths of paths found when Algorithms 1 or 2 are invoked. For a path P , we
use len(P) to denote the length of P .

Lemma 5.4 Let (x, f, `) be a feasible solution to LatLP. Suppose that v ∈ V and A ⊆ V is a set
containing v and s such that xuv ≥ α for some α and all u ∈ A \ {v}. Then there is a feasible
solution to LP(α) on the subset of vertices A whose cost is at most `(v).

Proof. Consider the flow fv on V , which constitutes one unit of flow from s to v. Similar to the
proof of Lemma 2.2, we split off all vertices of V \ A from fv, so that it becomes one unit of flow
from s to v that is confined to the set A. We claim that this modified fv flow, call it f̂v, is a feasible
solution to LP(α) on the set A and terminals s and v. Constraints (1), (2), and (3) are implied by
constraints (16), (14), and (15), respectively, for fv and are preserved by the splitting-off process.

Let Y ⊂ A be a set as in constraint (4), and let y be an arbitrary vertex in Y . Constraints (18)
imply that the connectivity λ(s, y) in fv is at least xyv, which, by the assumption of the Lemma,
is at least α. Since this connectivity is preserved by the splitting-off, Y has at least α amount of
incoming flow in f̂v as well, showing that constraints (4) are also satisfied by this solution. �

Lemma 5.5 For any iteration (i, j) of Algorithm 3, len(P ji) ≤ δ1 log n · 2i for some constant δ1;

and the set Pji contains at most 2 log n paths of total length at most 2 log n · 2i. The path Pg found
at the end of the algorithm satisfies len(Pg) ≤ (2 log n+ 1) · `(t).

Proof. As vertices u ∈ Aji satisfy x
uvji
≥ 2

3 , Lemma 5.4 shows that there is a solution to

LP(α = 2
3) on Aji of cost at most `(vji) < 2i for iteration i. Then, by Theorem 1.3, Algorithm 1

finds a path with the desired cost. Similarly, on line 11, x
uvji
≥ 1

2 for any u ∈ Bj
i , and thus there

20

is a solution to LP(α = 1
2) on Bj

i of cost at most 2i, which allows us to apply Theorem 1.4 with
k = 2. For Pg on line 18, Constraint (13) enforces that xut = 1 for all u, so the result follows by
using Lemma 5.4 with α = 1 and Theorem 1.1. �

Next we present three auxiliary claims that will be useful for bounding the cost of the append
operations in the algorithm.

Claim 5.6 For any two distinct vertices u,w with w 6= s, we have `(w) ≥ duw · xuw.

Proof. Decompose the flow fw as
∑k

i=1 λiPi+C where C is a circulation, each Pi is the incidence

vector of an s-w path, and the λi are non-negative values with
∑k

i=1 λi = 1. Note that the cost

of fw is exactly
∑k

i=1 λi · cost(Pi) + cost(C). Then Constraints (18) imply that the sum of the λi
values for paths Pi containing u as an intermediate vertex is at least xuw. Finally, the cost of each
Pi containing u is at least duw since Pi contains a u-w path and, by the triangle inequality, duw is
the shortest u-w path. So duw · xuw is at most the cost of fw which, in turn, is at most `(w) by
Constraints (8). �

Claim 5.7 If at any point in Algorithm 3 the walk T ends at a vertex u, then all vertices w with
xwu > 5/6 are already in T .

Proof. If u = s, then no such vertices w exist. Otherwise, u = vj
′

i′ is the endpoint of some path
constructed earlier, during the iteration (i′, j′). Note that j′ ≤ 2 and i′ ≤ g − 1 ≤ log `(t) ≤ 2 log n

by our assumption that `(t) ≤ n2, which means that 5
6 ≥

2
3 + 2i′−2+j′

24 logn . So any w with xwu > 5/6

would be included in the set Aj
′

i′ and in the path P j
′

i′ , and thus be already contained in T . �

Claim 5.8 For any ε > 0, if xuw + xwv ≥ 1 + ε, then `(v) ≥ ε · duw.

Proof. Using Constraint (11) we have:

1 + ε ≤ xuw + xwv

= (xvuw + xuvw + xuwv) + (xuwv + xwuv + xwvu)

= 2xuwv + (xvuw + xuvw) + (xwuv + xwvu).

On the other hand, (xvuw + xuvw) + (xwuv + xwvu) ≤ xvw + xwu = 2 − (xuw + xwv) ≤ 1 − ε,
using again Constraint (11), then Constraint (12), and the assumption of the lemma. Therefore,
2xuwv ≥ (1 + ε)− (1− ε) = 2ε, i.e. xuwv ≥ ε. Then the claim follows using Constraint (9). �

The following two lemmas bound the lengths of edges introduced by the append operation in
the different cases. For a path P , let app(P) be the length of the edge used for appending P to the
walk T in the algorithm.

Lemma 5.9 For any i, j, and path P ∈ Pji , app(P) ≤ 6 · 2i. Also, app(Pg) ≤ 6 · 2g.

Proof. Suppose either P is in some Pji or P = Pg. Let u be the last vertex of T before the append
operation and w be the first vertex of P that does not appear in T . We bound duw, the distance
from u to w. As w is not in T , Claim 5.7 implies that xwu ≤ 5/6 and thus xuw = 1− xwu ≥ 1/6. By
Claim 5.6, we then have `(w) ≥ 1

6duw. If P ∈ Pji , it must be that w ∈ Bj
i , which, by definition,

means that w ∈ Vi, and therefore `(w) ≤ 2i. So app(P) = duw ≤ 6 · 2i. Otherwise, if P = Pg, then
we have app(Pg) ≤ 6`(w) ≤ 6`(t) ≤ 6 · 2g. �

21

Lemma 5.10 For any i and j, app(P ji) ≤ 24 log n · 2i.

Proof. Let u, vji , and w be as in the proof of Lemma 5.9. To bound duw, we consider two cases.
Case 1: w ∈ Vi. By Claim 5.7, xwu ≤ 5/6, so xuw ≥ 1/6, so by Claim 5.6, `(w) ≥ 1

6duw. Now,

since w ∈ Vi, then `(w) ≤ 2i, so app(P ji) = duw ≤ 6 · 2i.
Case 2: w 6∈ Vi. Let (i′, j′) be the earlier iteration of the algorithm in which vertex u = vj

′

i′

was added to T . Since w /∈ T , it must be that w /∈ Aj
′

i′ , and thus xwu <
2
3 + 2i′−2+j′

24 logn . On the other

hand, since w ∈ Aji , it must be that x
wvji
≥ 2

3 + 2i−2+j
24 logn . Since (i′, j′) is an earlier iteration than

(i, j), we have 2i′ + j′ ≤ 2i+ j − 1. So

xuw + x
wvji

= (1− xwu) + x
wvji

≥ 1− 2i′ − 2 + j′

24 log n
+

2i− 2 + j

24 log n

≥ 1 +
1

24 log n
.

Using Claim 5.8, `(vji) ≥ duw/24 log n, so app(P ji) = duw ≤ 24 log n · `(vji) ≤ 24 log n · 2i. �

Lemma 5.11 Suppose that a vertex v is first added T in iteration h of the outer loop of the
algorithm. Then the latency of v in T is at most δ2 log n · 2h, for some constant δ2 > 0.

Proof. Using Lemmas 5.5, 5.9, and 5.10, the latency of vertex v on T is at most:

h∑
i=1

2∑
j=1

len(P ji) +
∑
P∈Pj

i

len(P) + app(P ji) +
∑
P∈Pj

i

app(P)

≤

h∑
i=1

2∑
j=1

[
δ1 log n · 2i + 2 log n · 2i + 24 log n · 2i + 2 log n · 6 · 2i

]
≤ δ2 log n · 2h

�

Let L∗ be the cost of the LatLP solution that the algorithm uses. Suppose that ni is the number
of vertices that are originally placed into the set Vi. Since a vertex v is originally placed in Vi if
`(v) ≥ 2i−1, the value of L∗ can be bounded by:

L∗ =
∑
v

`(v) ≥
g∑
i=1

ni 2i−1. (19)

Let n′i denote the size of Vi at the beginning of iteration i of the outer loop. Note that n′i may be
larger than ni since some vertices may have been moved to Vi in Step 16 of the previous iteration.

Lemma 5.12 For any i, the cardinality of the set Vi, at the end of iteration i, is at most n′i/4.

22

Proof. Consider any iteration i of the for loop on line 3 and iteration j = 1 of the loop on line
5. Note that the vertex vji is chosen precisely to maximize the number of vertices u in Vi with

x
uvji
≥ 1/2, which is the size of the set Bj

i . Consider a directed graph H on the set of vertices Vi,

in which an edge (u,w) exists whenever xuw ≥ 1/2. Then vji is the vertex with highest in-degree in

this graph. Now, from Constraint (12) it follow that the total number of edges in H is at least
(n′i
2

)
,

which means that there is some vertex in H whose in-degree is at least (n′i − 1)/2. So the number

of vertices removed from Vi in step 13 of the algorithm is at least |Bj
i ∪ {v

j
i }| ≥ n′i/2, and size of

Vi decreases at least by a factor of two. Similarly, at least half of the remaining vertices of Vi are
removed in the iteration j = 2, so overall the size of Vi decreases at least by a factor of four. �

We now show that the total latency of the final solution is at most O(log n) · L∗.

Proof of Theorem 1.5. From Lemma 5.12, it follows that at most a 1/4 fraction of the n′i
vertices that are in Vi at the beginning of iteration i are moved to the set Vi+1 at the end of this
iteration. Thus, for any 1 < i ≤ g, n′i ≤ ni + n′i−1/4. This implies that n′i ≤

∑i
h=1 nh/4

i−h.
Now we claim that the total latency of T is at most

∑g
i=1 n

′
i · δ2 log n · 2i. This is because at

most n′i vertices are added to T in iteration i, and each such vertex has latency at most δ2 log n · 2i
(using Lemma 5.11). Therefore, the total latency of the solution is at most:

g∑
i=1

n′i · δ2 log n · 2i ≤
g∑
i=1

δ2 log n · 2i ·
i∑

h=1

nh
4i−h

= δ2 log n

g∑
i=1

i∑
h=1

2h−i · 2h nh

≤ δ2 log n

g∑
h=1

2h nh

∞∑
i=0

1

2i

≤ O(log n) · L∗,

using the bound on n′i, re-ordering the summation, and using inequality (19). Due to triangle
inequality, the latency of each vertex in the final path produced by the algorithm is no higher than
the latency of its first occurrence in T . Combined with Corollary 5.3, this proves the theorem. �

6 Concluding Remarks

Very recently, Friggstad et al. [15] have improved the integrality gap of LP(α = 1) toO(log n/ log logn),
which matches the best known approximation algorithm for ATSPP [4,11]. However, this does not
immediately imply an improvement for the directed latency problem.

We note that our approximation guarantee for directed latency is of the form O(γ1 +γ2 + log n)
where γ1 is the integrality gap of LP(α = 2

3) and γ2 is such that we can find at most 2 log n paths
from s to t of total cost at most γ2 times the value of LP(α = 1

2). We proved that both γ1 and γ2
are at most O(log n) in Theorems 1.3 and 1.4. However, improving these bounds does not imply
an improved approximation for the directed latency problem. It would be interesting to know
if LP relaxation LatLP, or any other LP relaxation for directed latency, has an integrality gap
that is within a constant factor of the best possible bounds on γ1 and γ2. More generally, does a
bound of γ in the integrality gap of LP(α = 1) for ATSPP imply an O(γ)-approximation for the

23

directed latency problem? Knowing this combined with the results of [15] would imply an improved
approximation for directed latency.

Acknowledgements

This work was partly done while the second author was visiting Microsoft Research New England;
he thanks MSR for hosting him. We also thank the anonymous referees for helpful comments.

References

[1] F. N. Afrati, S. S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, and N. Papakostanti-
nou. The complexity of the travelling repairman problem. Informatique Theorique et Appli-
cations, 20(1):79–87, 1986.

[2] H-C. An, R. Kleinberg, and D.B. Shmoys. Improving christofides’ algorithm for the s-t path
TSP. In Proc. 44th ACM Symp. on Theory of Computing, pages 875–886, 2012.

[3] A. Archer, A. Levin, and D. P. Williamson. A faster, better approximation algorithm for the
minimum latency problem. SIAM J. Comput., 37(5):1472–1498, 2008.

[4] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi. An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem.
In Proc. 21st ACM Symp. on Discrete Algorithms, 2010.

[5] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The
minimum latency problem. In Proc. 26th ACM Symp. on Theory of Computing, 1994.

[6] D. Chakrabarty and C. Swamy. Facility location with client latencies: linear programming
based techniques for minimum latency problems. In Proc. of the 15th Conference on Integer
Programming and Combinatorial Optimization, pages 92–103, 2011.

[7] M. Charikar, M. X. Goemans, and H. Karloff. On the integrality ratio for asymmetric TSP.
In Proc. 45th IEEE Symp. on Foundations of Computer Science, 2004.

[8] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours.
In Proc. 44th IEEE Symp. on Foundations of Computer Science, 2003.

[9] C. Chekuri and M. Pal. An O(log n) approximation ratio for the asymmetric traveling salesman
path problem. Theory of Computing, 3(1):197–209, 2007.

[10] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

[11] U. Feige and M. Singh. Improved approximation ratios for traveling salesperson tours and
paths in directed graphs. In Proc. 10th APPROX, 2007.

[12] A. Frank. On connectivity properties of Eulerian digraphs. Ann. Discrete Math., 41:179–194,
1989.

24

[13] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algorithms for
the asymmetric traveling salesman problem. Networks, 12:23–39, 1982.

[14] A. M. Frieze. An extension of Christofides heuristic to the k-person travelling salesman prob-
lem. Discrete Applied Mathematics, 6(1):79–83, 1983.

[15] Z. Friggstad, A. Gupta, and M. Singh. An improved integrality gap for asymmetric TSP paths.
In Proc. of the 16th International Conference on Integer Programming and Combinatorial
Optimization, pages 181–192, 2013.

[16] M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency
problem. Math. Program., 82:111–124, 1998.

[17] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathe-
matics, Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands, second edition,
2004.

[18] G. Gutin and A. P. Punnen, editors. Traveling Salesman Problem and Its Variations. Springer,
Berlin, 2002.

[19] J. A. Hoogeveen. Some paths are more difficult than cycles. Oper. Res. Lett., 10:291–295,
1991.

[20] B. Jackson. Some remarks on arc-connectivity, vertex splitting, and orientation in digraphs.
Journal of Graph Theory, 12(3):429–436, 1988.

[21] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algorithms for
asymmetric TSP by decomposing directed regular multigraphs. J. ACM, 52(4):602–626, 2005.

[22] J. Kleinberg and D. P. Williamson. Unpublished note, 1998.

[23] F. Lam and A. Newman. Traveling salesman path problems. Math. Program., 113(1):39–59,
2008.

[24] E. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys, editors. The Traveling
Salesman Problem: A guided tour of combinatorial optimization. John Wiley & Sons Ltd.,
1985.

[25] I. Mendez-Diaz, P. Zabala, and A. Lucena. A new formulation for the traveling deliveryman
problem. Discrete Applied Mathematics, 156(17):3223–3237, 2008.

[26] E. Minieka. The deliveryman problem on a tree network. Ann. Oper. Res., 18:261–266, 1989.

[27] V. Nagarajan and R. Ravi. Poly-logarithmic approximation algorithms for directed vehicle
routing problems. In Proc. 10th APPROX, pages 257–270, 2007.

[28] V. Nagarajan and R. Ravi. The directed minimum latency problem. In Proc. 11th APPROX,
pages 193–206, 2008.

[29] C. H. Papadimitriou and S. Vempala. On the approximability of the traveling salesman prob-
lem. Combinatorica, 26(1):101–120, 2006.

25

[30] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

[31] D. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound: a monotonicity
property with application. Inf. Process. Lett., 35(6):281–285, 1990.

[32] D. P. Williamson. Analysis of the Held-Karp heuristic for the traveling salesman problem.
M.S. Thesis, MIT, 1990.

[33] L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical
Programming Study, 13:121–134, 1980.

26

