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Abstract

Given a graph G, the edge-disjoint cycle packing problem is to find the largest set of cycles of which no
two share an edge. For undirected graphs, the best known approximation algorithm has ratio O(

√
log n) where

n = |V (G)| and is due to Krivelevich et al [14, 15]. In fact, they proved the same upper bound for the integrality
gap of this problem by presenting a simple greedy algorithm. Here we show that this is almost best possible. By
modifying integrality gap and hardness results for the edge-disjoint paths problem given by Chuzhoy and Khanna
[1, 9], we show that the undirected edge-disjoint cycle packing problem has an integrality gap of Ω(

√

log n

log log n
) and

furthermore it is quasi-NP-hard to approximate the edge-disjoint cycle problem within ratio of O(log
1

2
−ε n) for

any constant ε > 0. The same results hold for the problem of packing vertex-disjoint cycles.

1 Introduction

In the problem of edge-disjoint cycle packing (EDC) we are given a graph G and our goal is to find a largest set
of edge-disjoint cycles. The vertex analog of the problem, vertex-disjoint cycle packing (VDC), is the problem of
finding a largest set of vertex-disjoint cycles in the given graph. The EDC problem has been studied extensively in
both directed and undirected settings (e.g. see Balister et al. [3], Caprara et al.[5], and Seymour [18]). A discussion
on the applications of packing cycles to computational biology and reconstructing evolutionary trees can be found
in [3].

Both EDC and VDC are known to be NP-hard even for undirected graphs and for very restricted cases of the
problem (see e.g. [10]). This motivates the study of approximation algorithms for these problems. Caprara, Pan-
conesi and Rizzi [5] showed that EDC is APX-hard even when restricted on planar graphs. They also presented
a simple greedy algorithm with approximation ratio O(log n). Recently, Krivelevich et al. [14, 15] showed that a
modification of the simple greedy algorithm of [5] with a more careful analysis yields an O(

√
log n)-approximation

for EDC on undirected graphs. In fact, the algorithm obtains an integer solution that is within factor O(
√

log n)

of the optimal fractional solution. They showed examples for which the solution obtained by the greedy algorithm
was within Ω(

√
log n) of the optimal solution but it falls short of proving any super-constant lower bound on the
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integrality gap or approximability of the problem. They also presented an O(
√

n)-approximation for EDC on di-
rected graphs and an O(log n)-approximation for undirected VDC. Subsequently, in [16, 15], an integrality gap
of Ω( log n

log log n) for EDC on directed graphs was proved. This result was followed by a hardness of approximation.
There was proved that unless NP ⊆ DTIME(npolylog(n)), it is hard to approximate EDC on directed graphs within
O(log1−ε n) for any ε > 0. However, the best known lower bound on the approximability of EDC on undirected
graphs remains APX-hardness and the best lower bound for integrality gap is O(1). For EDC on planar graphs,
Caprara, Panconesi, and Rizzi give a 2 + ε-approximation algorithm [4].

For the related problem of edge-disjoint paths (EDP), on directed graphs the best approximation algorithms have
ratio O(min{n 2

3 log
1
3 n,

√
m}) [6, 13, 19] and it is known the problem is hard to approximate within O(m

1
2
−ε) for

any ε > 0 [11]. For undirected graphs, the best known approximation ratio for EDP is O(
√

n) [7] whereas the best
known hardness result is only Ω(log

1
2
−ε n) for any ε > 0 [1, 9]. The latter result was built on the major advance on

the lower bound of EDP (from APX-hardness to Ω(log
1
3
−ε n)) by Andrews and Zhang [2].

In this paper, we improve the lower bounds for both EDC and VDC. More specifically, we first present an
integrality gap construction which shows that the integrality gap upper bound of [14, 15] is almost tight.

Theorem 1.1 The EDC problem on undirected graphs has an integrality gap of Ω(
√

log n
log log n).

Then we show almost the same bound for the hardness of approximation for these problems.

Theorem 1.2 The EDC problem on undirected graphs is hard to approximate within O(log
1
2
−ε n) for any ε > 0

unless NP ⊆ ZPTIME(npolylog(n)).

This shows that the simple greedy algorithm of [14, 15] with approximation ratio O(
√

log n) is almost best
possible for EDC. The reduction in the proof of Theorem 1.2 works, without modification, to prove the same hardness
result for VDC. Our results are heavily motivated by the hardness of the edge-disjoint paths problem presented by
Chuzhoy and Khanna in [9]. Nevertheless, they show a rather surprising approximability threshold for a very natural
packing problem. In fact there are very few problems known to have a sub-logarithmic approximability threshold
([8, 12]). One other important message to be taken from our results is that, in order to improve the hardness of
approximation for EDP (from Ω(log

1
2
−ε n) to beyond Ω(

√
log n)), there has to be substantially new ideas developed

that exploit the differences between EDC and EDP problems; since such a hardness result should not be adaptable
to work for EDC (because we already have an O(

√
log n)-approximation for EDC).

The rest of the paper is separated into three more sections. In Section 2 we describe the construction of a graph
with large integrality gap for EDC. The ideas from this section motivate the proof of hardness of approximation
result in the subsequent section. Section 3 starts by recalling a PCP characterization of NP presented in [9] based on
the results of Samorodnitsky and Trevisan [17]. Following this, the construction of the EDC instance is presented as
a reduction from 3SAT using this PCP result. Section 4 analyzes this construction to prove the hardness result for
EDC.

2 Integrality Gap

The construction of an instance of the EDC problem with a large integrality gap is similar to the construction used
by Chuzhoy and Khanna in [9]. We begin by generating a random graph G and use this graph to generate another
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graph H . With sufficiently large probability, the resulting graph H has a super-constant integrality gap. We use a
model of random graph different from [9] which enables us to handle some special cases that are overlooked in the
analysis of [9].

2.1 Constructing the Gap

Given a sufficiently large integer n, define β1 =
√

log n
8 log log n and β2 = 5β1 lnβ1. The ultimate goal is to construct a

graph with O(n2) nodes and integrality gap Ω(β1). Start by building a random Hamiltonian cycle F on n vertices.
Then we add a random graph G1 = Gn,p to F with p = 2β2

n−1 , i.e. for each pair of nodes, if there is no edge between
them already (due to F ), we add it randomly (and independently) with probability p = 2β2

n−1 . This is our graph G.
Now, from graph G we will create another graph H as follows. For each edge ei ∈ G, add vertices `i and ri

to H and connect them with an edge `iri which will be called a special edge. Finally, for each vertex v of G, let
ev1 , ev2 , . . . , evk

be the edges incident with v in some arbitrary order. Add edges rvi`vi+1 to H for all 1 ≤ i ≤ k

where vk+1 = v1. Call the sequence of vertices `v1 , rv1 , `v2 , rv2 , . . . , `vk
, rvk

the canonical cycle of v denoted by
Cv . Notice that each special edge `iri in H (corresponding to edge ei ∈ G) appears in exactly two canonical cycles
Cu and Cv where u and v are the endpoints of ei in the original graph G. Every other edge appears in exactly one
canonical cycle in H . Note that since the minimum degree of G is 2, every vertex in G has a corresponding canonical
cycle in H . So we have n canonical cycles in H .
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Figure 1: Constructing the canonical cycle for v.

2.2 Analysis

If we assign a fractional value of 1
2 to each canonical cycle in H , each special edge has total fractional value 1 and

all the other edges have fractional value 1
2 . Thus, no edge constraint is violated and we have a fractional packing of

cycles with total value n/2 in H (as there are n canonical cycles in H).
We now bound the number of cycles in any integral packing C in H . First observe that the expected degree of

each node v in G1, E[d(v)], is 2β2. Using Chernoff bound, Pr[d(v) < β2] ≤ Pr[d(v) < 1
2E[d(v)]] ≤ e−β2

2/4. So
the expected number of nodes with degree smaller than β2 in G1 is at most n · e−β2

2/4 ≤ n
8β1

. Thus using Markov’s
inequality, with probability at least 7

8 the number of nodes with degree smaller than β2 in G1, and therefore in G, is
at most n

β1
.

Second, let M1 = |E(G1)|. Since E[M1] = p ·
(n
2

)

= β2n, again using Chernoff bound, the probability of
|M1 − β2n| > β2n/4 is exponentially small. So we can assume that with probability at least 7

8 :

3

4
β2n < M1 <

5

4
β2n. (1)
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If we define M = |E(G)|, since M1 ≤ M ≤ M1 + n, using (1), the probability of event |M − β2n| > β2n/2

is at most 7
8 . Let the bad event E0 be the event that either |M − β2n| > β2n/2 or there are more than n

β1
nodes with

degree smaller than β2. From above it follows with probability at least 3
4 event E0 does not happen.

Note that for every pair of nodes uv, for the probability of having an edge e = uv in G we have:

Pr[e 6∈ G] = Pr[e 6∈ F ] · Pr[e 6∈ G1|e 6∈ F ]

=

(

1 − 2(n − 2)!

(n − 1)!

)

·
(

1 − 2β2

n − 1

)

=

(

1 − 2

n − 1

)

·
(

1 − 2β2

n − 1

)

= 1 +
4β2

(n − 1)2
− 2β2 + 2

n − 1

Thus Pr[e ∈ G] = 2β2+2
n−1 − 4β2

(n−1)2
≤ 3β2

n−1 . Defining p′ = 3β2

n−1 we can assume each edge exists in G with
probability at most p′. For g = 6β1β2, we say that a cycle is short if it is of length less than g and long otherwise.
Let C1, C2, and C3 be the set of canonical cycles, long cycles, and short cycles of C, respectively. So C = C1∪C2∪C3.
We will bound the size of each Ci by O(n/β1) which implies |C| ∈ O(n/β1). Let the bad event E1 be the event that
there are more than n/β1 edge-disjoint canonical cycles in C, i.e. |C1| > n/β1.

Lemma 2.1 The probability of bad event E1 happening is at most 1
4 .

Proof. First we obtain a bound on the probability that some fixed subset S ⊆ V (G) of size n/β1 doesn’t contain an
edge. Since each edge exists with probability p′, the probability that a fixed set S of size n/β1 is empty is at most:

(

1 − 3β2

n − 1

)(n/β1
2 )

≤
(

1 − 3β2

n

)n2/(4β2
1 )

≤ e
−β2n

2β2
1 .

The number of such sets S is
(

n
n/β1

)

≤ (eβ1)
n/β1 ≤ β

2n/β1

1 ; so by union bound the probability of having any set S

of size n/β1 that does not contain an edge is at most:

β
2n
β1
1 · e

−β2n

2β2
1 ≤ e

n
β1

“

2 lnβ1− β2
2β1

”

≤ e
−n lnβ1

2β1 ≤ 1

4
.

2

To bound |C2|, first observe that graph H has 3M edges. Since all cycles in C2 are of length at least g then |C2|
is easily bound by 3M

g ≤ n
β1

, assuming that E0 does not happen.
Now we bound the size of C3. First, obtain the multi-graph H ′ from H by contracting all special edges `iri to a

single vertex uei . So each such vertex uei now corresponds to an edge ei in G. If there are two edges between two
nodes of H ′ then the only explanation can be that the edges come from the same canonical cycle corresponding to
a degree 2 vertex of G. If we assume bad event E0 does not happen, there are at most n

β1
cycles of length 2 in H ′.

Now we bound the number of cycles of length 3 ≤ k < g in H ′. It is easy to see that a bound on the number of

4



cycles of length less than g in H ′ is an upper bound on the number of cycles of length less than g in G. Denote by
E2 the event that there are more than n

β1
simple cycles in H ′.

Lemma 2.2 The probability of bad event E2 occurring is at most 1
4 .

Proof. We begin by bounding the expected number of cycles of some fixed length 3 ≤ k < g in H ′. Let C =

ei1 , ei2 , . . . , eik be an ordered sequence of edges forming a cycle in H ′ where eij = uij uij+1 and all uij ’s are
distinct for 1 ≤ j ≤ k where ik+1 = i1. Denote the edge in G corresponding to uij by hij for all 1 ≤ j ≤ k.
By the construction of H ′, for each two consecutive nodes uij , uij+1 in C (1 ≤ j ≤ k), the corresponding edges
hij and hij+1 in G must be incident with a vertex i.e. have a common end-point (note that hi1 , . . . , hik do not
necessarily form a cycle in G since, for example, hij , hij+1 , and hij+2 can all be incident to the same vertex). Given
a sequence of pairs of nodes in G like hi1 , . . . , hik , whose corresponding nodes in H ′ form a simple cycle like C ,

the probability that all pairs hi1 , . . . , hik are actually edges in G is
(

3β2

n−1

)k
. A loose upper bound on the number

of such sequences of pairs of nodes in G (that correspond to a simple cycle in H ′) is (2n)k since once we select a
pair of nodes, there are at most 2n − 4 other pairs of nodes, each of which has an end-point in common with the
previous one. Also, every sequence of k edges in G, like hi1 , . . . , hik corresponds to a sequence of k nodes in H ′,
say ui1 , . . . , uik , and if this sequence forms a (simple) cycle then it forms at most 2k cycles in H ′ because between
every pair of nodes in H ′ there are at most two edges. Thus, the expected number of cycles of length k in H ′ is at
most 2k · (2n)k ·

(

3β2

n−1

)k
≤ (16β2)

k. Summing over all cycle lengths 3 ≤ k < g gives an upper bound of (16β2)
g

on the expected number of short (simple) cycles. By Markov’s inequality, the probability that there are more than
4(16β2)

g cycles of length 3 ≤ k < g in H ′ is at most 1
4 . We show that this quantity is bound by n/β1.

4(16β2)
g ≤ β2g

2 = e2g ln β2 = e12β1β2 lnβ2

≤ e60β2
1 lnβ1 ln β2

≤ e120β2
1 ln2 β1

≤ e
120 ln n

64(ln ln n)2
· 1
(2 ln ln n)2

≤ e
ln n
2

≤ n

β1
.

Therefore, the probability that there are more than n/β1 short (simple) cycles in C3 is at most 1
4 . 2

Therefore, assuming that E0 and E2 do not happen |C3| ≤ 2n/β1. By union bound, the probability of E0∪E1∪E2

is at most 3
4 . So with probability at least 1

4 graph G (and accordingly graph H) with the above properties exist and
so any collection of disjoint cycles of H is of size at most |C| ≤ |C1| + |C2| + |C3| ≤ 4n

β1
. Since we can pack n/2

cycles fractionally in H , then the integrality gap is Ω(β1) = Ω
( √

log n
log log n

)

. The number of vertices of graph H is

N = 2M ∈ O(n2). Therefore, the integrality gap in H is Ω
( √

log N
log log N

)

.
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3 The Hardness Construction

In this section we prove Theorem 1.2. We show how a modification of the construction used to prove the hardness of
approximating edge-disjoint paths by Chuzhoy and Khanna in [9] can be used to show the same hardness for EDC.
Our starting point is a PCP characterization of NP introduced in [17].

3.1 A PCP Characterization of NP

To begin, we use the same PCP characterization of NP used in [9] which is a slight modification of the character-
ization obtained by Samorodnitsky and Trevisan in [17]. Let Φ be an instance of 3SAT with n variables. For any
constant k > 0, consider a PCP verifier that uses r = O(log n) random bits and queries q = k2 bits of a proof Π.
Let R be a random string of length r and denote the indices of the bits of the proof that are read given the random
string R as b1(R), . . . , bq(R). Define a configuration to be the tuple (R, a1, . . . , aq) where R is a random string of
length r and ai = Πbi(R) ∈ {0, 1}, for 1 ≤ i ≤ q , are the values of the bits read in the proof. A configuration
(R, a1, . . . , aq) is called accepting if the PCP verifier accepts upon using random string R and reading proof bits
a1, . . . , aq . It follows ([9]) from the construction of [17] that for every constant k > 0 and for sufficiently large
constant β >> k2 there exists a a PCP verifier for Φ with the following properties:

• λr = O(log n log log n) random bits are used with r = O(log n) and λ = 2β log log n
k2 .

• Exactly q = λk2 = O(log log n) bits of the proof are queried for each random string.

• If Φ is satisfiable, then there exists a proof Π such that the acceptance probability of the PCP verifier upon
reading Π is at least 2−λ.

• If Φ is not satisfiable, then the acceptance probability of the PCP verifier upon reading Π is at most 2−λk2 for
all proofs Π.

• Every random string R participates in 2λ(2k−1) accepting configurations.

• For every random string R and for every j = 1 . . . q, the number of accepting configurations with Πbj(R) = 0

and the number of accepting configurations with Πbj(R) = 1 are equal.

• Let Zj to be the set of all accepting configurations with Πj = 0 and let Oj be the set of all accepting
configurations with Πj = 1. Let nj = |Zj | = |Oj |. Then nj ≥ 2λr/2.

• Let A be the set of all accepting configurations. Then |A| ≤ 2λr · 22λk.

For a given instance of Φ of 3SAT with n variables, we assume that V is a PCP verifier with aforementioned
properties and we choose k to be a large enough constant.

3.2 The Bit Gadget

The basic construction here is identical to that of [9]. Let M and X be two parameters which will be specified later.
We only note that X will be exponentially larger than M , i.e. X >> 2M . For each proof bit Πi, we construct a
bit gadget G(i) in the following manner. Recall that Zi and Oi are the set of accepting configurations in which bit
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Πi is zero and one, respectively. For each accepting configuration α ∈ Zi ∪ Oi and for each 1 ≤ m ≤ M + 1, we
create X vertices vx,m(α, i), for 1 ≤ x ≤ X , called level m vertices. Let Zm(i) = {v1,m(α, i), . . . , vX,m(α, i)}
be the set of level m vertices when α ∈ Zi. Similarly define Om(i) to be the set of level m vertices when α ∈ Oi.
Between levels m and m + 1, for 1 ≤ m ≤ M , create Xni vertices Lm(i) = {`1,m(i), . . . , `Xni,m(i)} as well as
Xni vertices Rm(i) = {r1,m(i), . . . , rXni,m(i)} where ni = |Zi| = |Oi|.

The edges in the bit-gadget are specified as follows. For each 1 ≤ m ≤ M , create a random matching between
the Xni level m vertices associated with some α ∈ Zi and the vertices in Lm(i). Similarly, create a random matching
between the vertices in Rm(i) and the Xni level m + 1 vertices associated with some α ∈ Zi. Repeat the same
process between vertices associated with some α ∈ Oi. Finally, for each 1 ≤ m ≤ M and for each 1 ≤ j ≤ Xni,
join `m,j(i) and rm,j(i) with an edge which we call a special edge. Figure 2 illustrates this construction.

For each configuration α ∈ Zi ∪ Oi, we define a canonical path Px(α, i) for 1 ≤ x ≤ X , as being the path

(vx1,1(α, i), `a1 ,1(i), ra1 ,1(i), vx2 ,2(α, i), . . . , `aM ,M (i), raM ,M (i), vxM+1,M+1(α, i))

where the indices x1 = x and the remaining xm, am indices are defined by the random matchings. Essentially, a
canonical path corresponding to configuration α begins at one of the X vertices vx,1(α, i) and follows the random
matchings between levels while never visiting vertices in Oi if α ∈ Zi or never visiting vertices in Zi if α ∈ Oi.
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Figure 2: Bit gadget construction for proof Πi

Note that the canonical paths corresponding to the Xni configurations in Zi are all edge-disjoint. Similarly, the
canonical paths to the configurations in Oi are edge-disjoint. Each special edge belongs to exactly two canonical
paths (one corresponding to a configuration in Zi and one in Oi) and every other edge belongs to exactly one
canonical path. Consider the set of Xni special edges at level m (1 ≤ m ≤ M ). Since each such special edge
participates in exactly one canonical path representing a configuration in Zi and one canonical path representing a
configuration in Oi, the set of special edges in level m, defines a matching between canonical paths corresponding to
configurations in Zi and canonical paths corresponding to configuratinos in Oi. This matching is random (because
of the random matchings placed before these special edges). So overall, the M levels of special edges define M

random matchings between the canonical paths corresponding to configurations in Zi and in Oi.
Let ∆ = M

8 log M , noting that M ≥ 8∆ log ∆ holds. For each index i of proof Π, let P0(i) be the set of canonical
paths corresponding to a configuration in Zi and P1(i) be the set of canonical paths corresponding to a configuration
in Oi. A bit gadget G(i) is said to be bad if there is a pair of subsets A ⊆ P0(i), B ⊆ P1(i) with |A| = |B| = Xni

∆

such that all paths in A ∪ B are edge disjoint. Define bad event B1 to be the event that there is some bit gadget that
is bad. The next lemma claims that with sufficiently high probability B1 does not happen. The proof is a simple
first-moment analysis. The idea is that each path from A and each path from B can be matched by any of the M
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random matchings defined by the special edges, in which case the two paths are not edge-disjoint. Since our bit
gadget is identical to the bit gadget constructed in [9], the following result holds as well.

Lemma 3.1 [9] The probability that bad event B1 happens is at most 1
poly(n) .

3.3 The Main Construction

In this subsection we show how to combine the bit gadgets into the final construction. This is essentially the same
construction as in [9] with the modification that the corresponding source-sink pairs are connected by a new set of
edges, called back-edges.

Let α = (R, ai1 , ai2 , . . . , aiq ) be an accepting configuration with i1, . . . , iq being the indices of the proof
bits queried upon reading the random string R. For each 1 ≤ j < q, we connect bit gadget G(ij) to bit gad-
get G(ij+1) by creating a random matching between the sets of vertices {v1,M+1(α, ij) . . . vX,M+1(α, ij)} and
{v1,1(α, ij+1), . . . vX,1(α, ij+1). For each 1 ≤ x ≤ X , we define canonical path Px(α) = (Px1(α, i1), . . . , Pxq (α, iq))

where the xj’s are recursively defined as follows: x1 = x and xj corresponds to the canonical path in G(ij) whose
start point is matched with the end-point of Pxj−1(α, ij−1) in G(ij−1) for each 2 ≤ j ≤ q.

After performing the random matching, add an edge, called a back edge, for each canonical path Px(α) between
the start and end vertices in that path. From this, we define a canonical cycle Cx(α) to be the cycle formed by the
canonical path and the associated back edge. Denote the set of all canonical cycles by C. A few important facts
about this graph are noted. First, the length of each canonical cycle is (3M + 1)q ≤ 4Mλk2. Second, for each
accepting configuration α, there are X edge-disjoint canonical cycles associated with α. Finally, the degree of each
vertex is at most 3. Figure 3 illustrates this final construction.

We set X = 222λ(k2+4k) and M = 2λ(k2+k) in the final construction. Then X = 2polylog(n) and M = polylog(n).
Each vertex and edge participate in at least one canonical cycle and |C| ≤ X · 2λr · 2λ(2k−1) with the length of
each cycle in C being bound by 4Mλk2. Denoting the number of vertices in the final construction by N we have
N ≤ X · 2λr · M · 22λk ≤ X · 2O(log n log log n).

Random
Matching

Random
Matching

Random
Matching

Back Edges For α

G(i  )1 G(i  )2 G(i  )q

v   (   ,i  )α1,1 1

αv    (   ,i  )
X,1 1

1αv         (   ,i  )1,M+1 1,1v   (   ,i  )α 2
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X,1 21v          (   ,i  )

X,M+1
α

2αv         (   ,i  )1,M+1

2v          (   ,i  )
X,M+1

α

1,1
v   (   ,i   )α q

αv    (   ,i   )
X,1 q

αv         (   ,i   )1,M+1 q

v          (   ,i   )
X,M+1

α q

. . .

Figure 3: The final instance for configuration α.

3.4 Analysis

Here we show that if Φ is a satisfiable instance of 3SAT then there are many edge-disjoint cycles in the instance
we built (those corresponding to the canonical cycles). On the other hand if Φ is a no-instance then the number of
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edge-disjoint cycles is small. For this part we show that the number of canonical as well as non-canonical cycles is
small.

3.4.1 Φ is Satisfiable

If Φ is satisfiable, then there exists a proof Π′ for which the probability of acceptance of verifier V is at least 2−λ. For
each of the at least 2λr−λ random strings R that result in verifier V accepting proof Π′, choose all of the X canonical
cycles corresponding to the configuration (R, a1, . . . , aq) where the aj’s, 1 ≤ j ≤ q , are the values of the bits read
in proof Π′ when the random string is R. It is easy to see that the set of all these canonical cycles are edge-disjoint.
Denoting the number of edge-disjoint cycles when Φ is satisfiable by CY I , we have CY I ≥ X · 2λr−λ ≥ |C|

22λk .

3.4.2 Φ is not satisfiable

Suppose that Φ is not satisfiable and let C ′ be a collection of edge-disjoint cycles of the constructed graph G. Define
g = 22λ(k2+k). We say a cycle is short if its length is less than g; otherwise the cycle is called long. Partition C ′ into
sets C1, C2, and C3 where C1 is the set of all canonical cycles in C ′, C2 is the set of long non-canonical cycles, and C3

is the set of short non-canonical cycles. We bound the sizes of each of C1, C2, and C3. The proofs of the following
two lemmas are essentially the same as the the corresponding arguments in [9]. We skip repeating them here.

Lemma 3.2 If bad event B1 does not happen, then |C1| ≤ 2CY I

2λk2−2λk−λ
.

The number of long non-canonical cycles is at most |E(G)|
g ≤ |C|·4Mλk2

g . Since g = 22λ(k2+k) and M = 2λ(k2+k)

it follows that g/(4Mλk2) ≥ 2λk2 . Thus:

Lemma 3.3 |C2| ≤ |C|
2λk2 ≤ CY I

2λk2−2λk
.

To bound the number of short non-canonical cycles we have to be more careful. For that we first define bad event
B2 as the event |C3| > CY I

2λk2 .

Lemma 3.4 Event B2 happens with probability at most 1
3 .

Proof. Let G′ be the resultant graph when all of the special edges of G are contracted. An upper bound for the
number of cycles of length less than g in G′ is clearly an upper bound for the number of cycles of length less than g

in G as well. Consider any length g′ < g and let us bound the number of non-canonical cycles of length g ′. There
are two types of edges in G′: those that come from random matchings in G and those that are back-edges in G.

Claim 3.5 The probability of each edge e = uv appearing in the graph G′ given the existence of g′ − 1 other edges

that do not form a canonical path from u to v, is at most 1
X−g′+1 .

This is easy to see for the case of a non-back-edge (i.e. random matching edge) as each matching edge exists
with probability at most 1

X−g′+1 given the existence of g′ − 1 other edges. The case of a potential back-edge is
different as the back-edges are not completely random (each is created between the source and sink of a canonical
path; but the path is created randomly). Consider a potential back edge e = uv between a source node u and a
sink node v (note that u and v are not necessarily the end points of a canonical path) and suppose we are given the
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existence of up to g′ − 1 other edges that do not form a canonical path from u to v. Moreover, consider the partial
canonical paths from u and from v using the other at most g ′ − 1 other edges. Since there is currently no canonical
path from u to v (otherwise we have a canonical cycle with e), then the probability that u and v are endpoints of the
same canonical path is exactly the probability that they will be connected with a new random-matching edge. Thus,
the probability that e exists is at most 1

X−g′+1 . Using these arguments, for any potential non-canonical cycle C of
length g′ the probability that all edges of C exist is at most ( 1

X−g′+1)g
′ ≤ (2/X)g′ . A coarse upper bound on the

number of potential cycles of length g ′ in G′ is N g′ which yields that the expected number of non-canonical cycles
of length g′ being no more than

(

2N
X

)g′ . Summing over all g′ < g, this yields an upper bound of
(

2N
X

)g on the
expected number of short non-canonical cycles.

Since N ≤ X · 2λr+2λk+λ(k2+k), the expected number of cycles of length less than g is at most 2λg(r+k2+4k) ≤
23λrg . By Markov’s inequality, the probability that the number of cycles of length less than g is greater than 24λrg ≥
3 × 23λrg is at most 1

3 . 2

Therefore, if event B2 does not happen, then:

|C3| ≤ 24λrg ≤ 222λ(k2+3k)+log log n

because r = O(log n). Also, since λ = β log log n/k2 for β >> k2, then λk ≥ log log n resulting in

|C3| ≤ 222λ(k2+4k) ≤ X ≤ CY I

2λ(r−1)
≤ CY I

2λk2 .

3.4.3 Wrap up

If neither of bad events B1 nor B2 happens, then |C ′| = |C1| + |C2| + |C3| ≤ CY I

2λ(k2−3k)
. So the gap between the

size of the solution of G for the case that Φ is a yes-instance and for the case that Φ is a no-instance of 3SAT is
Ω(2λ(k2−3k)). Remembering that N ≤ X ·2λr ·M ·22λk , we have log N ≤ 22λ(k2+4k) +3λr. By selecting β a large

constant we have log N ≤ 22λ(k2+5k) which yields
√

log N ≤ 2λ(k2−3k) · 28λk =
(

2λ(k2−3k)
)1+ 8

k−3 . Therefore,

2λ(k2−3k) = log
1
2
−( 4

k+5 and so for any ε > 0, we can choose k = k(ε) > 0 such that the gap is at least log
1
2
−ε N .

The probability of either of events B1 or B2 occurring is at most 1/(poly(n)) + 1/3 ≤ 1/2. So, if a (log
1
2
−ε n)-

approximation algorithm exists for the edge-disjoint cycles problem for any ε > 0, then a co-RPTIME(npolylog(n))

algorithm for 3SAT exists, which in turn implies the existence of a ZPTIME(npolylog(n)) algorithm for 3SAT by a
standard result. Thus, for any ε > 0, it is hard to approximate the edge-disjoint cycle packing problem within a
factor of Ω(log

1
2
−ε n) unless NP ⊆ ZPTIME(npolylog(n)).

3.5 The Hardness of VDC

Since each vertex has degree at most 3 in the construction of G, an edge-disjoint cycle packing must also be a vertex-
disjoint cycle packing. Also, a vertex-disjoint cycle packing must be an edge-disjoint cycle packing. Therefore,
the preceding construction and analysis also shows that it is hard to approximate the vertex-disjoint cycle packing
problem to within a factor of Ω(log

1
2
−ε n) for any ε > 0 unless NP ⊆ ZPTIME(npolylog(n)). The integrality gap

for EDC holds for V DC by the same reasoning.
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4 Concluding Remarks

Theorem 1.2 together with the results of [14, 15] yield an almost tight ratio for approximability of EDC in the
undirected setting (O(

√
log n) v.s. Ω(log

1
2
−ε n) for any ε > 0). However, the gap between the best approximation

ratio and hardness lower bounds for undirected VDC as well as directed EDC (and VDC) are pretty wide; as said
earlier, the best upper and lower bounds for undirected VDC are O(log n) and Ω(log

1
2
−ε n), and for directed EDC

are O(
√

n) and Ω(log1−ε n) (for any ε > 0), respectively. The bounds for directed EDC are in the same ballpark
as the upper and lower bounds for approximability of the edge-disjoint paths problem in the undirected setting; this
does not seem to be coincidental as both the approximation algorithms and the lower bound techniques used for
these problems are similar in nature and we seem to need substantial new ideas to improve upon any of these. As
we mentioned in the Introduction, what is interesting to note is that, given that our hardness result for EDC uses
essentially the same construction for hardness result for EDP, any new improved hardness of approximation for EDP
(beyond O(

√
log n)) needs substantially new ideas that exploit the differences between EDP and EDC problems

since the best ratio for undirected EDC essentially meets the current hardness for undirected EDP.
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