
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 8 (Sept. 23): Minimum-Cost Flows via Augmenting Paths
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

8.1 Augmenting Cycles

We begin by finishing the following result (see the previous lecture for definitions).

Theorem 1 A flow f is a minimum-cost flow if and only if Gf contains no negative-cost cycles.

Proof. Last lecture, we prove that if Gf has a negative cost cycle then f is not a minimum-cost flow. So we
focus on the other direction. Suppose cost(f ′) < cost(f) for some flow f ′ with val(f ′) = val(f). We demonstrate
that Gf has a minimum-cost cycle.

Call some f : E → R≥0 with f(δin(v)) = f(δout(v)) a circulation (this definition does not discuss capacities).
We find a negative-cost cycle in two ways. First, we show that Gf has a negative-cost circulation. Then we
show a general result that any graph with a negative-cost circulation necessarily has a negative-cost cycle.

First define g : E → R by g(e) = f ′(e)− f(e). Note g(δin(v)) = g(δout(v)) at each vertex v (including s and t)
because it is the difference of two flows with the same value. Also note cost(g) = cost(f ′)− cost(f) < 0.

From g, we get a circulation in f in Gf as follows: for e ∈ Ef let

f(e) =

 f ′(e)− f(e) if e ∈ E and g(e) > 0
f(←−e)− f ′(←−e) if ←−e ∈ E and g(←−e) < 0

0 otherwise

Note that each e ∈ E with g(e) > 0 has e ∈ Ef as f(e) < f ′(e) ≤ µ(e) and each e ∈ E with g(e) < 0 has
←−e ∈ Ef as 0 ≤ f ′(e) < f(e). From this, a careful inspection of the definitions shows f is indeed a circulation
in Gf with cost (in Gf) equal to cost(g) < 0.

The proof is completed if we establish the following claim.

Claim
For every circulation f , there are cycles C1, . . . , Ck and scalars λ1, . . . , λk > 0

This would complete the proof because it is easily seen cost(f) =
∑k
i=1 λi · c(Ci). From this,

min
1≤i≤k

λi · c(Ci) ≤
k∑
i=1

λi · c(Ci) = cost(f) < 0.

Because λi > 0 for all i, then c(Ci) < 0 for some i.

We now prove the claim. If f(e) = 0 for all e ∈ E then we are done (with k = 0). Otherwise, let uv ∈ E
be such that f(uv) > 0. We inductively construct a walk u = v1, v = v2, v3, v4, . . . , vn, vn+1 where, for any
2 ≤ i ≤ n we let vi+1 be any vertex such that vivi+1 ∈ E and f(vivi+1) > 0. This is guaranteed to exist because
0 < f(vi−1vi) ≤ f(δin(vi)) = f(δout(vi).

8-1

8-2 Lecture 8: Minimum-Cost Flows via Augmenting Paths

Because |V | = n, there are indices 1 ≤ i < j ≤ n such that vi = vj . Choose such a pair with j − i being as
small as possible, then vi, vi+1, . . . , vj−1 are all distinct and vi, vi+1, . . . , vj−1, vj is a cycle using edges C1 =
{vivi+1, vi+1vi+2, . . . , vj−1vj , vjvi} with positive f -value.

Let λ1 = mine∈C f(e) and define χC1
: E → {0, 1} (the indicator vector for C1) with

χC(e) =

{
1 if e ∈ C1

0 if e 6∈ C1

Then by our choices we have f∗ := f − λ1 · χC1 being a circulation and |supp(f∗)| = |{uv ∈ E : f∗(uv) > 0}| <
|supp(f)| (because some edge e ∈ C1 has f(e) = λ1 so f∗(e) = 0).

We express f = f∗ + λ1 · χC1
. Iterating with f∗ and noting each iteration reduces the number of edges with

positive flow by at least 1, after at most m iterations we finally see f =
∑k
i=1 λi ·χCi

for some k ≤ m and some
cycles Ci with weights λi ≥ 0. This is the same as saying f(e) =

∑
i:e∈Ci

λi for each e ∈ E.

8.2 Successive Shortest Paths Algorithm

We now come to our first algorithm for computing a minimum-cost flow. It will not run in polynomial time in
general, but it will in the important special case of minimum-cost perfect matching in a bipartite graph.

The algorithm initially starts with the all-0 flow f and augments it along minimum-cost s − t paths in Gf . It
also maintains a potential φ for (Gf , cf) in each step. This will both allow us to quickly find the augmenting
path (using Dijkstra’s) and will also certify at each step that we have a minimum-cost flow.

Assumption
We will assume the maximum flow value in G is at most γ. This can be enforced by creating a new vertex s′

that has a single outgoing edge to s, setting µ(s′s) = γ and c(s′s) = 0.

Algorithm 1 Successive Shortest Paths Algorithm for the Minimum-Cost Flow Problem

Input: G = (V ;E) (directed), capacities µ : E → R≥0, costs c : E → R≥0, distinct s, t ∈ V , target flow γ ≥ 0.
Output: A minimum-cost flow of value γ plus a potential for Gf , or
None.

add a new vertex s′ to V and a new edge s′s to E with µ(s′s) = γ, c(s′s) = 0.
f(e)← 0 for each e ∈ E
φ(v)← 0 for each v ∈ V {We will prove φ is always a potential for the flow f .}
while there is an s′ − t path in Gf do
P ← a minimum-cost s′ − t path in Gf {Computed via Dijkstras using costs cφ.}
for each v ∈ V , `(v)← cost of a minimum-cost s′ − v path in Gf under edge-costs cφ
φ(v)← φ(v) + `(v)
Augment f along P .

end while
if val(f) < γ then
return None

else
return f, φ (excluding the entries f(s′s) and φ(s′))

end if

Alternatively, instead of adding the new vertex s′ and edge s′s, we could just ensure the augmenting step never
augments the flow past value γ.

Lecture 8: Minimum-Cost Flows via Augmenting Paths 8-3

This correctly decides if there is even a flow with value γ because it operates just like the Ford-Fulkerson
algorithm. We will verify that each iteration leaves φ being a potential for f . Given this, we see each iteration
runs in O(m + n log n) time because every step takes linear time apart from the Single Source Shortest Path
calculation, which can be executed in O(m+n log n) time using Dijkstra’s algorithm on Gf and the potential φ.

Unfortunately this suffers from the same running time issue as the Ford-Fulkerson algorithm. The number of
iterations may not be polynomial in the input size. We will briefly discuss (next lecture) how it works well for
minimum-cost bipartite matching. We will, however, establish that in each iteration f is a minimum-cost flow.

Theorem 2 Initiallly and after each iteration, f is a minimum-cost flow and φ is a potential for Gf .

Proof. Really we just have to establish that φ is a potential for Gf , because this certifies Gf has no negative-cost
cycles (the proof was given in the previous lecture) and then Theorem 1 shows f is a negative-cost cycle.

To that end, note that φ is initially a potential because cφ(uv) = c(uv) + φ(u)− φ(v) = c(uv) ≥ 0 because only
original edges of E lie in the initial residual graph Gf (as f is the all-0 flow) and we assume c(e) ≥ 0 for each
e ∈ E.

Let fi, φi denote the flow and potential after the i’th step (and f0 the initial flow, φ0 the initial potential).
Inductively, assume φi is a potential for Gfi . Also let `i(v) denote the lengths calculated in the i’th iteration.
Consider some uv ∈ Efi+1

. If uv ∈ Efi we have

`i(v) ≤ `i(u) + cφi
(uv) = `i(u) + c(uv) + φi(u)− φi(v).

So
cφi+1

(uv) = c(uv) + φi+1(u)− φi+1(v) = c(uv) + φi(u) + `i(u)− φi(v)− `i(v) ≥ 0

where the bound is exactly what was just shown above.

If uv 6∈ Efi then because uv ∈ Efi it must be that vu was on the minimum-cost path P . In this case, we know

`i(u) = `i(v) + cφi(vu).

Then

cφi+1
(vu) = c(vu) + φi+1(v)− φ(i+ 1)(u)

= c(vu) + φi(v) + `i(v)− φ(u)− `i(u)

= cφi
(vu) + `i(v)− `i(u)

= 0.

Then by the simple observation that cfi+1
(uv) = −cfi+1

(vu) for any vu ∈ E, we also have cφi+1
(uv) = 0.

The algorithm can easily be adapted to work if some input costs can be negative even if there are negative-cost
cycles.

• If there is a negative-cost cycle using only edges with infinite capacity (which, technically, isn’t allowed
by our definition but we could easily extend it to include this), then there is no notion of a cheapest flow
because we could push arbitrarily-high amounts of flow across this cycle.

• Otherwise, we start with the all-o flow and then iteratively augmenting the flow across negative-cost cycles
in Gf . One can prove this eventually stops if the capacities are rational values. Once this is done, we
get our initial potential for the current residual network and then begin augmenting along minimum-cost
augmenting paths until there are no more augmenting paths.

