
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 7 (Sept. 21): Graph Potentials and Minimum-Cost Flow
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

We discussed graph potentials, which are a short certificate that a directed graph with edge costs has no
negative cost cycles. They are also useful for finding minimum-cost paths in graphs with negative edge costs
using Dijkstra’s algorithm (which normally does not work in this setting).

We then began a discussion of minimum-cost flows.

7.1 Minimum-Cost Paths

First, a brief review of what we may recall about minimum-cost paths from our undergraduate algorithms
classes.

Let G = (V ;E) be a directed graph and c : E → R edge costs. They may be negative. A negative-cost
cycle is a cycle C in G whose total edge cost c(C) is strictly negative.

Let s, t be distinct vertices in G. We want to know about the cheapest s− t path (doesn’t repeat vertices). We
distinguish between algorithms that compute Single-Source Shortest Paths (SSSP) and All-Pairs Shortest
Paths (APSP). An SSPS algorithm will compute the cost of a cheapest s− v path from a given s for all v ∈ V .
An APSP algorithm will compute the costs of the cheapest paths between all pairs of nodes. Furthermore,
enough information will be stored to recover a minimum-cost path in O(n) time between any queried pair of
nodes for which the minimum-cost path cost was computed.

• In general this is NP-hard if the graph contains negative-cost cycles (from the Hamiltonian Path problem).

• If there are no negative-cost cycles, the Bellman-Ford computes SSPS in O(n ·m) time and the Floyd-
Warshall algorithm computes APSP in O(n3) time.

• If there are no negative-cost edges, Dijkstra’s algorithm computes SSPS in O(m+ n log n) time.

The Bellman-Ford algorithm can also be used to detect if the graph has negative-cost cycles in O(m · n) time.

You may have only seen O(m log n) running time for Dijkstra’s in your undergraduate classes, but O(m+n log n)
is possible using more sophisticated data structures. In this class, you may take these running times for granted
without reproving them.

7.2 Potentials

We fix a directed graph G = (V ;E) with costs c : E → R.

Definition 1 A potential for (G, c) is a mapping φ : V → R such that if we define cφ : E → R by

cφ(uv) := c(uv) + φ(u)− φ(v)

then cφ(uv) ≥ 0 for each uv ∈ E. We call the cφ-costs when φ is a potential the potential costs.

7-1



7-2 Lecture 7: Graph Potentials and Minimum-Cost Flow

Potential costs are useful when discussing paths and cycles.

Lemma 1 For any s, t ∈ V (not necessarily distinct), any s− t walk W , and any potential φ for (G, c) we have
cφ(W ) = c(W ) + φ(s)− φ(t).

Proof. Let the nodes of the walk be given (in order) as s = v1, v2, . . . , vk = t. Then

cφ(W ) =

k−1∑
i=1

c(vivi+1) + φ(vi)− φ(vi+1).

But each vi with 1 < i < k has φ(vi) appearing positively in one term and negatively in the previous term, so
the sum telescopes to simply c(W ) + φ(s)− φ(t).

Corollary 1 For any s−t, the set of minimum-cost s−t paths under costs c is the same as the set of minimum-
cost s− t paths under costs cφ.

So if we are given a potential, we can use Dijkstra’s algorithm to compute minimum-cost paths in graphs with
negative-cost edges O(m+ n log n) time.

When does a graph have a potential, and how can we find one?

Theorem 1 There is a potential for (G, c) if and only if G contains no negative-cost cycles. This can be decided
and a potential can be computed (if it exists) in O(n ·m) time.

Proof. If there is a potential φ then cφ(C) ≥ 0 for every cycle C because cφ(e) ≥ 0 for each edge e.

Conversly, suppose G has no negative cost cycle. Construct the auxiliary graph H = (V ∪{r};E ∪{rv : v ∈ V })
where r is new vertex not in V . Keep the same costs c for e ∈ E and set c(rv) = 0 for each v ∈ V . Let φ(v) be
the cost of a cheapest r − v walk in H. Note this is well-defined as H has no negative cost cycles1.

Then for each edge uv ∈ E we have c(uv) +φ(u) ≥ φ(v), or else we could get a cheaper walk to v by first taking
a cheapest walk to u and then using the edge uv. Thus φ is a potential for (G, c).

The Bellman-Ford algorithm applied to H with start vertex r will compute these φ values or indicate that H
(thus G) has a negative-cost cycle.

7.3 Minimum-Cost Flows

Throughout this section, we fix the following.

• G = (V ;E) a directed graph

• c : ER≥0 nonnegative edge costs

• µ : ER≥0 edge capacities

• s, t distinct vertices in V

1This takes a short proof: any walk with repeated vertices contains a cycle, so removing it will not increase the cost. Therefore,
for any walk there is a path that is no more expensive, so the cost of a cheapest walk is well-defined as we only have to look at the
finite set of all r − v paths.



Lecture 7: Graph Potentials and Minimum-Cost Flow 7-3

• γ ≥ 0 a target flow value

For any f : E → R we define cost(f) =
∑
e∈E c(e) · f(e). It is helpful to view c(e) as the cost of pushing one

unit of flow across e.

Definition 2 Given the above input, the minimum-cost flow problem is to find an s−t flow f with val(f) =
γ such that cost(f ′) ≥ cost(f) for all s− t flows f ′ with val(f) = γ (or determine no such flow f exists).

In other words, we want to push γ units of flow from s to t and to do it as cheaply as possible.

We know how to efficiently determine if any such flow exists by computing a maximum flow f in polynomial
time. If val(f) < γ then no such flow exists. Otherwise, scaling each f(e) by γ

val(f) will produce a flow with

value γ. Alternatively, we could create a new source s′, attach s′ to s with an edge with capacity γ, and simply
see if the maximum s′ − t flow has value γ or not.

We define the residual network Gf = (V ;Ef ) for a flow f and residual capacities µf : Ef → R≥0 as before. The
edge costs cf : Ef → R of Gf are defined as follows: for e ∈ Ef ,

cf (e) =

{
c(e) if e ∈ E

−c(←−e ) if ←−e ∈ E

7.3.1 Augmenting Cycles

Let f be a flow and C a cycle in Gf . To augment f along C is to create a new flow f ′ in the following way.

Let α = mine∈C µf (e) and note α > 0. For e ∈ E let

f ′(e) =

 f(e) + α if e ∈ C
f(e)− α if ←−e ∈ C

f(e) otherwise

One can verify the following:

• f ′ is an s− t flow (i.e. it satisfies flow conservation at v 6= s, t, is nonnegative, and obeys capacities).

• val(f ′) = val(f)

• cost(f ′) = cost(f) + α · c(C)

An example of augmenting along a cycle is depicted in Figure 7.1

7.3.2 Certificate of Optimality

Before we present our first algorithm, let us consider how to certify that a given flow is in fact a minimum-
cost flow. To be precise, we call a flow f a minimum-cost flow if cost(f ′) ≥ cost(f) for all flows f ′ with
val(f ′) = val(f).

Theorem 2 A flow f is a minimum-cost flow if and only if Gf contains no negative-cost cycles.



7-4 Lecture 7: Graph Potentials and Minimum-Cost Flow

ss

aa

cc

bb

dd

tt

1
1 1

2

25

2

5

1

ss

aa

cc

bb

dd

tt

1
1

2

5

5

1

3

1

2

Figure 7.1: Left: a flow (capacities and costs not depicted). If µ(cb) = 2, µ(cd) = 4, µ(db) = 2 then the edges
cd, db, bc form a cycle in Gf . If c(cb) = 6, c(cd) = 3, c(db) = 2 then the cost of this cycle is 3 + 2− 6 = −1. We
can augment the flow along this cycle by 1 unit (as µf (db) = 1 and db is the critical edge). Right: the resulting
flow. It’s cost is 1 cheaper than the cost of the flow on the left.

Equivalently, by Theorem 1, a flow f is a minimum-cost flow if and only if there is a potential for (Gf , cf ).

Proof. We just saw that if Gf has a negative-cost cycle c, then augmenting f along C produces a strictly
cheaper flow f ′ with val(f ′) = val(f).

The other direction will be proven next lecture.


