
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 4 (Sep 14): Push-Relabel Analysis
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

4.1 Push-Relabel Analysis

We analyze the Goldberg-Tarjan Push-Relabel algorithm that was described at the end of last lecture. We use
the notation in the notes from Lecture 3.

Our main goal is the following.

Theorem 1 In the Push-Relabel algorithm from Lecture 3, if the active vertex v selected has ψ(v) = max{ψ(w) :
w active} then the number of iterations is O(n2 ·

√
m).

We will also show in Lemma 4 that there is no s− t path in Gf at any point of the algorithm, including when
the algorithm terminates. Recall that a flow f is a maximum flow if and only if there is no s − t path in Gf .
Putting this all together, we have the following.

Corollary 1 The Push-Relabel algorithm computes a maximum flow in O(n2 ·
√
m) time.

Proof. The algorithm terminates in O(n2 ·
√
m) iterations (Theorem 1). When this happens, there are no

active vertices so in fact f is a flow (i.e. f(δin(v)) = f(δout(v))). As there is no s − t path in Gf (Lemma 4),
then f is a maximum flow.

We will briefly comment on implementing the algorithm to run in O(n2 ·
√
m) at the end of these notes.

4.1.1 Invariants

Claim 1 Every relabeling step for v increases ψ(v) by at least 1 (and there is at least one edge vw ∈ δoutEf
(v)).

Proof. First, v is active so exf (v) > 0. This means f(e) > 0 for some e ∈ δin(v), so ←−e ∈ Ef .

Next, the fact that ψ is a distance label yet v is not active means ψ(v) ≤ ψ(w) for each vw ∈ Ef . So relabeling
ψ(v) to min{ψ(w) + 1 : vw ∈ Ef} increases ψ(v) by at least 1.

Lemma 1 At the start of the algorithm and at the end of each iteration, f is a preflow and ψ is a distance
label with respect to the current preflow f .

Proof. Initially f is a preflow because the only edges e with f(e) > 0 are in δin(s) and the were set to carry
flow µ(e). Also, ψ is a distance label because ψ(s) is set to n, ψ(t) to 0, and every vw ∈ Ef has v 6= s (as all
edges exiting s are saturated) so 0 = ψ(v) ≤ ψ(w) + 1.

Inductively, suppose f, ψ are the flow and distance label at the start of an iteration and let f ′, ψ′ be the resulting
values after the iteration. If the iteration relabeled v, then f ′ = f so f ′ is a preflow. To show ψ′ is a distance label

4-1



4-2 Lecture 4: Push-Relabel Analysis

with respect to f ′ = f , first note that because v is active then ψ(v) 6= s, t so we still have ψ′(s) = n, ψ(t) = 0.
Next note that ψ(v) was relabelled to ψ′(v) in a way that ensures ψ′(v) ≤ ψ′(w) + 1 for each vw ∈ Ef = Ef ′ .
For other edges e = uv ∈ Ef ′ note,

ψ′(u) = ψ(u) ≤ ψ(v) + 1 ≤ ψ′(v) + 2

by Claim 1.

Finally, suppose the iteration involved a push operation across vw ∈ Ef . The push increases the excess at w
(it either increases flow on an edge entering w or decreases flow on an edge exiting w) and the amount of flow
that is pushed is at most exf (v) so exf ′(v) ≥ 0. The only potential edge in Ef ′ that is not in Ef is wv. But
the fact we only push along admissible edges shows

ψ′(w) = ψ(w) = ψ(v)− 1 ≤ ψ(v) + 1 = ψ′(v) + 1.

4.1.2 Basic Properties of Preflows and Distance Labels

Lemma 2 Let f be a preflow and ψ a distance label with respect to f . For any v with exf (v) > 0 there is a
v − s path in Gf .

Proof. Let R ⊆ V be the set of nodes reachable from v in Gf . Then∑
v∈R

exf (v) = f(δin(R))− f(δout(R)) = −f(δout(R)) ≤ 0.

The first is because the net contribution of any edge e = uw with u,w ∈ R to the sum is 0. The second is
because if there was some uw ∈ δin(R) with f(uw) > 0, then wu ∈ Ef . But w ∈ R is reachable from v, so u
would also be reachable and should then be in R, a contradiction.

Finally, we know exf (v) > 0 because v is active. Since v ∈ R and the total excess of nodes in R is ≤ 0, some
w ∈ R has exf (v) < 0. Since f is a preflow, we must then have w = s, so s ∈ R.

Lemma 3 For any u,w ∈ V , if there is a u− w path in Gf then ψ(u) ≤ ψ(w) + n− 1.

Proof. Let u = v0, v1, v2, . . . , vk−1, vk = w be a path in Gf . Note k ≤ n − 1, as any path has at most n − 1
edges.

For each 1 ≤ i ≤ k, we have that vi−1vi ∈ Ef so ψ(vi−1) ≤ ψ(vi) + 1. Chaining these bounds together, we see

ψ(u) = ψ(v0) ≤ ψ(vk) + k ≤ ψ(w) + n− 1.

Lemma 4 Let f be a preflow and ψ a distance label with respect to f . There is no s− t path in Gf .

Proof. If there was such a path, then Lemma 3 shows

n = ψ(s) ≤ ψ(t) + n− 1 = n− 1,

which is impossible.



Lecture 4: Push-Relabel Analysis 4-3

4.1.3 Running Time Analysis

Bounding the number of relabelings is easy.

Lemma 5 The total number of relabeling steps is at most 2n2.

Proof. We show each vertex is relabelled at most 2n− 1 times.

The moment after v is relabelled to, say, ψ′(v) it is still active. By Lemma 2, there is a v− s path in Gf ′ where
f ′ is the preflow just after the relabeling. Lemma 3 then shows ψ′(v) ≤ ψ′(s) + n− 1 = 2n− 1.

By Claim 1, any relabelling increases the label by at least 1 and each v 6= s has initial distance label 0, so the
distance label for v changes at most 2n− 1.

To count the number of push operations, we distinguish between two types of pushes.

Definition 1 A push operation along vw ∈ Ef (where f is the current preflow) is called a saturating push
if vw is not in the resulting preflow (equivalently, vw was augmented by µf (vw)). Every other push operation
is called a nonsaturating push.

Lemma 6 The number of saturating pushes is at most 2mn.

Proof. Recall that ER is the set of all possible edges and their reverses, so |ER| = 2m. We show each vw ∈ ER
is involved in a saturating push at most n times. To that end, let f, ψ denote the preflow and distance label
at the start of a saturating push for vw and let f ′, ψ′ denote the preflow and distance label at the start of the
next push operation for wv (i.e. just before vw reentered the residual graph).

Because vw was admissible during the saturating push, ψ(v) = ψ(w) + 1. Because wv was admissible during
the push that reintroduced vw to the residual graph, then ψ′(w) = ψ′(v) + 1. By Claim 1,

ψ(w) = ψ(v)− 1 ≤ ψ′(v)− 1 = ψ′(w)− 2.

That is, the distance label for w increases by at least 2 between saturating pushes across vw. The proof of
Lemma 5 shows the distance label for w never increases beyond 2n− 1. This shows the number of times vw is
involved in a saturated push is at most n.

Finally, it is possible to show the number of nonsaturating pushes is O(n2m) no matter which active vertex is
selected. With a bit more work, one can improve the running time bound if the active vertex with maximum
distance label is selected.

Lemma 7 If each iteration selects an active vertex v with ψ(v) = max{ψ(w) : w active} then the number of
nonsaturating pushes is O(n2 ·

√
m).

Proof. Let Ψ := max{ψ(v) : v active}. We view the algorithm as operating in phases, broken up by iterations
where Ψ changes. See Figure 4.1 for a depiction of phases and how Ψ changes. Call a phase cheap if the
number of unsaturating pushes in that phase is at most

√
m. Otherwise call the phase expensive.

Bounding the number of phases
Observe how Ψ changes. Each relabel operation increases Ψ, but the total increase of Ψ due to relabels is at
most 2n2 because

∑
v ψ(v) ≤ 2n2 (as was shown in the proof of Lemma 5). In a push operation across an edge

vw even if w becomes active then ψ(w) = ψ(v)− 1 < Ψ so Ψ cannot increase.



4-4 Lecture 4: Push-Relabel Analysis

iterations

phase 1 phase 2 phase 3 phase 4 phase 5 phase 6 phase 7

rsuur s s uu s suu u s u rus s u s su us s ru u sss s su su us u u s us u u su s s s u us s u s us u

 

Figure 4.1: Depicting the change of Ψ over time. The bold edges are the increasing parts. The labels s, u,
r denote an iteration with a saturating push, unsaturating push, and relabeling (respectively). A phase is the
sequence of iterations between changes of Ψ (including the last iteration when Ψ changes). Note: it might not
be possible to construct this exact sequence of increases and decreases of Ψ in an actual example, this is just
depicting the relevant parts for the arguments in the proof.

Overall, the total increase is at most 2n2, Ψ is initially 0, and is never negative. So the number of steps where
Ψ decreases is also at most 2n2. That is, there are at most 4n2 phases.

Unsaturating pushes in cheap phases
By definition and the bound on the number of phases in total, the total number of unsaturating pushes occuring
in cheap phases is at most 4n2 ·

√
m.

Unsaturating pushes in expensive phases
We track this with another potential. Let

Φ =
∑

v active

|{w ∈ V : ψ(w) ≤ ψ(v)}|.

Note 0 ≤ Φ ≤ n2 always. We track how Φ changes.

When v is relabeled, the increase in Φ due to term v is at most n and no other term increases. Therefore, the
total increase in Φ due to relabel steps is at most O(n3) (c.f. Lemma 5).

When a saturating push occurs along an edge vw, at most one new vertex becomes active and no distance labels
change so the total increase in Ψ is at most n. Therefore, the total increase in Φ due to saturating pushes is at
most O(n2 ·m) (c.f. Lemma 6).

Finally, an unsaturating push along an edge vw does not increase Φ because v goes inactive and w goes active
(if it was not already). But every u with ψ(u) ≤ ψ(w) satisfies ψ(u) ≤ ψ(v) because vw is an admissible edge.
So the increase in Φ due to w becoming active (if it does) at most the decrease due to v becoming inactive.

So the total increase of Φ plus the initial value of Φ is O(n2 ·m) (here we use assumption n − 1 ≤ m). What
remains is to show that each unsaturating push in an expensive phase decreases Φ by at least

√
m. If so, then



Lecture 4: Push-Relabel Analysis 4-5

the number of such pushes is at most O
(
n2·m√
m

)
= O(n2 ·

√
m).

Expensive unsaturating pushes decrease Φ by
√
m

Focus on a single expensive phase and let S be the set of vertices v such that there was an unsaturating push
along some edge in δout(v) in this phase. We have ψ(v) = Ψ for each v ∈ S because Ψ does not change
throughout the phase and we always choose active vertices with maximum ψ value.

If vw is augmented in an unsaturating push then v goes inactive. The only way for v to become active again is
for some push uv to happen, but this requires ψ(u) = ψ(v) + 1 so it cannot happen in this phase. Therefore,
no two saturating pushes in this phase come from the same vertex, so |S| ≥

√
m.

Note that a relabeling step terminates a phase, so the distance labels ψ are the same throughout all unsaturating
pushes in this phase. Let vw be an edge in an unsaturating push in this phase. Then v ∈ S yet w 6∈ S because
ψ(w) = ψ(v)− 1 < Ψ. Therefore,

S ⊆ {u : ψ(u) ≤ ψ(v)} − {u : ψ(u) ≤ ψ(w)}.

In other words, the decrease in Φ due to v becoming inactive is at least |S| ≥
√
m more than the increase due

to w (possibly) becoming active. So this unsaturating push decreases Φ by at least
√
m.

Note: the choice of
√
m in the definition of a cheap phase was to optimize the running time analysis. If

we set it to some initially unspecified value α, we would have the number of unsaturating pushes in cheap

phases is O(n2α) and the number of unsaturating pushes in expensive phases is O
(
n2m
α

)
for a running time of

O
(
n2
(
α+ m

α

))
. So setting α :=

√
m (asymptotically) minimizes the running time analysis.

4.1.4 Efficient Implementation

We comment on how to implement the algorithm to run in O(n2 ·
√
m) time.

For each 0 ≤ i ≤ 2n−1, let Li be a doubly-linked list that holds all active vertices v with ψ(v) = i. Furthermore,
for each nonempty Li include a reference to the next and the previous nonempty linked list (think another
doubly linked list whose entries are the lists Li themselves). For each active v, keep a reference to the link in
the appropriate list containing v.

When a vertex w is made active, we know that ψ(v) = ψ(w) + 1 so whether Lψ(w) is empty or not it is easy,
using the previous and next references for the lists, to insert w into Li (if needed) and update the references.
When a vertex v is deactived (due to an unsaturating push) it is similarly easy to update these lists in constant
time.

When a label φ(v) is increased, it is increased to φ(w) + 1 for some w. It is a little harder to update the list
pointers in constant time when moving v to the new list, but we can find the largest i between the old and new
labels of v with Li 6= using a simple linear scan. For each v, the total time spent scanning over all relabels of v
is O(n) since different scans for v are over non-overlapping ranges.

Finally, we need to determine how to find an admissible edge quickly (or determine none exists). Each vertex
keeps a list of potential edges to push along. When looking for a potential edge, scan through the list and
discard those that are not admissible until an admissible edge is encountered. Every time v is relabelled (and
also initially at the start of the algorithm), this list includes all possible edges that exit v.

When a push vw occurs, add wv to the list for w. There are O(n) relabels for each vertex so the total time an
edge is added to v’s list due to a relabel is O(mn). The total number of times some edge is added to some list
due to a push is at most the number of push operations.


