
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 32 (Nov 28): Semidefinite Programming
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

For square matrices A,C we let A ◦C =
∑
i,j Ai,j ·Ci,j . Recall that A � 0 means A is a symmetric, positive

semidefinite matrix

In a semidefinite program (SDP), we are given square matrices A1, . . . ,Am ∈ Rn×n with associated values
b1, . . . , bm ∈ R plus an objective function matrix C ∈ Rn×n. Finally, there is a matrix of variables X over
Rn×n.

The goal is to optimize the following:

maximize : C ◦X
subject to : Ai ◦X = bi ∀ 1 ≤ i ≤ m

X � 0

The left side of the equality constraints and the objective function itself are linear functions over the variables
in X. So the only really new ingredient here over linear programming is the p.s.d. constraint X � 0.

We note this is a convex optimization problem.

Lemma 1 The set S+ = {X ∈ Rn×n : X � 0} is closed and convex.

Proof. For convexity, suppose X,Y � 0. Let 0 ≤ λ ≤ 1. For any z ∈ Rn we have

zT · (λX + (1− λ)Y) · z = λ(zTXz) + (1− λ) · (zTYz) ≥ 0.

So λ ·X + (1− λ) ·Y � 0. Therefore S+ is convex.

To see it is closed, let X1,X2, . . . , be any sequence of p.s.d. matrices whose entries converge to X. For any
z ∈ Rn it is easy to see then that the sequence of values ρi := zT ·Xi · z also converges to ρ := zT ·X · z. As
ρi ≥ 0 for each i, then ρ ≥ 0 as well. This holds for each z so X ≥ 0. This shows S+ is closed.

32.1 Bad Examples

Here are some examples demonstrating how semidefinite programming does not enjoy many nice properties
exhibited by linear programs.

Cannot Achieve the Optimum
The theory of linear programming is quite nice. If an LP is feasible but not unbounded, then one can achieve
the optimum solution. This is not the case with semidefinite programming, as the following example shows. Let
X be a 2× 2 matrix.

Consider
maximize : −X1,1

subject to : X1,2 = 1
X � 0

32-1

32-2 Lecture 32: Semidefinite Programming

Any feasible solution is a positive semidefinite matrix of the form

(
X1,1 1

1 X2,2

)
. This is p.s.d. if and only

if X1,1,X2,2 ≥ 0 and X1,1 ·X2,2 ≥ 1. Equivalently X1,1 ≥ 1
X2,2

. So there are feasible solutions whose value is

arbitrarily close to 0 but this maximum is never obtained.

Only Irrational Optimal Solutions
Consider the following SDP where the constraint matrices, r.h.s. values, and objective function are all given by
rational values. However, there is only one optimal solution and it is irrational.

maximize : X1,2

subject to : X1,1 = 1
X2,2 = 2

X � 0

Recall that a 2 × 2 matrix is p.s.d. if and only if both its trace (sum of diagonal entries) and determinant are

nonnegative. If we write X =

(
1 x
x 2

)
, we see trace(X) = 1+2 and so X � 0 if and only if det X = 2−x2 ≥ 0.

That is, x ≤
√

2. So the unique optimum solution has x =
√

2.

Doubly-Exponential Feasible Solutions
One can imagine that the irrationality or lack of convergence to a true optimum is not a big problem in practice
as long as we can find the optimum solution up to some small error tolerance (perhaps even violating feasibility
by only a small amount). But a more fundamental problem is that a semidefinite program may have all feasible
solutions being doubly-exponential in value! That is, expressing an explicit fractional feasible solution (or even
near-feasible solution) would itself require exponentially many bits!

For example, consider the following matrix A ∈ R2n×2n. All entries of A are 0 except for the following. For
each 1 ≤ i ≤ n let Ai denote the 2 × 2 submatrix of A with rows 2i, 2i + 1 and columns 2i, 2i + 1 of A (so a
small square around the diagonal). Let x1, . . . , xn be variables that will compose part of A. Then A has the
following form

A1 =

(
1 2
2 x1

)
,

and for 2 ≤ i ≤ n we have

Ai =

(
1 xi−1

xi−1 xi

)
,

If we assert A � 0, we can view this as asserting X � 0 for a matrix of variables and then setting the individual
entries as above using various linear equalities.

It is easy to prove by induction on n that xn ≥ 22
n

for any feasible solution n and that this can be achieved by
setting xi = 22

i

. So the SDP that maximizes −xn has doubly-exponential value.

To see the above claim, we argue about the individual 2× 2 blocks. That is, it is simple to show A � 0 if and
only if Ai � 0 for each i. In turn, this implies det Ai ≥ 0 for each i. That is, 1 · xi − x2i−1 ≥ 0 (where we use

x0 = 2). Inductively, this means xi ≥ x2i−1 ≥ (22
i−1

)2 = 22
i

. One can also check easily that setting xi = 22
i

indeed satisfies Ai � 0 for each i.

Thankfully, we can at least avoid this issue in most combinatorial settings as the intended entries of the matrix
are constrained to lie in a bounded set (e.g. X is often, ideally, containing only 0/1 entries or −1/ + 1 entries
in the intended integer optimum).

Lecture 32: Semidefinite Programming 32-3

32.2 Solving SDPs

We can still solve semidefinite programs in the following sense. Our statement is slightly informal, see [GS12]
for more proper statements about the solvability of semidefinite programs.

“Theorem”
Assume the set of all feasible solutions X to a semidefinite program have

∑
i,j X2

i,j ≤ R2 and that the input

matrices and values are rational numbers. For ε > 0, in time that is polynomial in logR, log 1
ε and the bit

complexity of the input we can find a solution with value at least OPT − ε.

In truth, it is slightly messier than this because X itself might be slightly infeasible. We ignore this matter and
simply note that what we discuss here can be adapted to handle this issue.

The main thing that drives such an algorithm is that we have a separation oracle for S+, the set of p.s.d.
matrices. That is, given X ∈ Qn×n we can either correctly assert X � 0 or find z ∈ Qn such that zT ·X · z < 0.
Reinterpreting this in the latter case, if we set Z = z · zT (the “outer” product) then X ◦ Z = zT ·X · z < 0 so
such z produces a hyperplane separating X from S+.

We formalize this, with some low-level work left to the reader.

Theorem 1 Let X ∈ Qn×n be symmetric. In time that is polynomial in the size of X, we can either correctly
assert X � 0 or find z ∈ Qn with zT ·X · z < 0.

Proof. We essentially step through the Cholesky decomposition algorithm which attempts to find vectors
v1, . . . ,vi such that Xi,j = vi ◦ vj . The Cholesky decomposition algorithm itself uses square roots to compute
the vi vectors, but one can observe that if the decomposition fails then we can in fact produce a rational vector
certifying X is not p.s.d.

Write

X =

(
α qT

q X′

)
with α ∈ Q,q ∈ Qn−1,X′ = Q(n−1)×(n−1).

• If α < 0 then X is not p.s.d. and we output z = (1, 0, 0, . . . , 0)T .

• If α = 0 then one can show we must have q = 0. Otherwise, setting z as

– z1 = − X′·q
2qT ·q − 1

– zi = qi−1 for 2 ≤ i ≤ n

has zT ·X · z < 0.

• If α > 0, we recursively check that X′′ := X′ − 1
α · q · q

T � 0. If so, we can declare X is p.s.d., if not

then we are also given (recursively) z′ ∈ Qn−1 with z′T ·X′′ · z′ < 0. We then set z1 = − 1
α

∑n−1
i=1 z′iqi and

zi = z′i−1 for 2 ≤ i ≤ n. One can check zT ·X · z < 0.

A careful inspection reveals the bit complexity of the returned value z is polynomial in the bit complexity of
X.

32-4 Lecture 32: Semidefinite Programming

32.3 Application: Approximating Maximum Cut

Let G = (V ;E) be an undirected graph. The goal is to find S ⊆ V such that |δ(S)| is as large as possible. Note
this is a special case of symmetric submodular maximization, and we already saw a naive 2-approximation for
this problem by letting S be a random subset of V .

Consider the following SDP where we view the matrix of variables as being indexed by vertices in V .

maximize :
∑
uv∈E

1−Xu,v

2
subject to : Xv,v = 1 for each v ∈ V

X � 0

The objective function sums over each edge precisely once. Note that the objective function is affine, not just
linear, but clearly we can maximize the linear function

∑
uv∈E −Xu,v to maximize the affine function.

Let S∗ ⊆ V be an optimum cut. By setting Xu,v = −1 if uv ∈ δ(S∗) and Xu,v = 1 if uv 6∈ δ(S∗) we get a
feasible solution. That is, if we let xv = 1 if v ∈ S∗ and xv = −1 if v 6∈ S∗ then Xu,v = xu · xv, so we have

described a Cholesky factorization of X meaning X � 0. For uv ∈ E, in this solution we have
1−Xu,v

2 = 1 if

uv ∈ δ(S∗) and
1−Xu,v

2 = 0 if uv 6∈ δ(S∗). That is, the objective function of this given X value is exactly |δ(S∗)|.

Therefore, if we let OPT = |δ(S∗)| denote the maximum cut value and OPTSDP denote the optimum SDP
value, then we have seen

Lemma 2 OPT ≤ OPTSDP

Conversely, let α :=
2

π
· min
0≤θ≤π

θ

1− cos θ
. Numeric evaluation shows α > 0.87856.

Theorem 2 OPT ≥ α · OPTSDP . Moreover, given a feasible solution X ∈ Qn×n to the above SDP there is a
randomized algorithm that finds a cut S with E[δ(S)] ≥ α ·

∑
uv∈E

1−Xu,v

2 − ε in time that is polynomial in the
size of X and log 1

ε .

Proof. Let X be feasible and let xv ∈ Rn for each v ∈ V be vectors such that xTv · xu = Xu,v. In practice, if
X ∈ Qn×n one can compute such vectors within arbitrary precision using the Cholesky decomposition algorithm
where each square root is computed within arbitrary precision. The precise statements about the relationship
with the desired ε are left up to the reader.

Cut the n-dimensional unit sphere in half along a random plane. In particular, sample a random η ∈ Rn where
each entry ηv ∼ N (0, 1) is an independent standard Gaussian. Set S = {v ∈ V : ηT · xv > 0}. That is, set S to
be all points lying on one side of the cut. Once again, we can effectively do this sampling up to an ε in practice
(e.g. through some appropriate discretization of the density function of the normal distribution), but we will
not focus on these details.

We will be done after showing the following.

Claim: For each uv ∈ E we have Pr[e ∈ δ(S)] ≥ α · 1−Xu,v

2 .

We prove the claim using geometric arguments that can be formalized with some care. Consider some uv ∈ E
and consider the plane including points xu,xv and the origin 0. See Figure 32.1 for an illustration.

By symmetry, the random hemispherical cut is cutting this plane along a random line through the origin. So
uv ∈ δ(S) if and only if this random line cuts xu and xv on this plane.

Let θuv be the angle between xu and xv. The random line separates u from v with probability exactly θuv

π .

Lecture 32: Semidefinite Programming 32-5

v⇤
i

v⇤
j

r

Figure 32.1: The vectors η, xu, and xv from the text are shown as r, v∗i , and v∗j ; this image is borrowed from
one of my previous courses. Note the two vectors separating xu,xv are separated if and only if the dashed line
(normal to η) cuts through the shades region, which happens precisely with probability θuv/π.

Recall Xu,v = xu ◦ xv = ||xu|| · ||xv|| · cos θuv = cos θuv. Thus, by definition of α we have

Pr[uv ∈ δ(S)] =
θuv
π
≥ α · 1−Xu,v

2
.

References

GS12 B. Gartner and A. Schrijver, Approximation Algorithms and Semidefinite Programming, Springer,
2012.

