CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 30 (Nov. 23): Submodular Functions

Lecturer: Zachary Friggstad Scribe: Arnoosh Golestanian

Part of this lecture proved the min-max theorem for Matroid Partitioning. The proof was moved to the matroid
partitioning notes in Lecture 28.

We moved on to submodular functions and submodular maximization.

30.1 Submodular functions

Definition 1 For a finite set X, a function f : 2X — R is submodular if V A,B C X, f(A) + f(B) >
f(AUB)+ f(AN B).

Examples:

e Matroid rank: have been discussed earlier in this course.
e Cardinality function: f(A) = |A]
e Cut function: Let A be a subset of vertices in a directed graph, then f(A) = [6°“¢(A)]

e Coverage function: For X = {S1,95%,...,5,} being a collection of subsets of some ground set Z, the
coverage function f(A) =| SUA S|, A C 2% is submodular.
€

e Max function: max{z € A} if X CR and A C X.
e s —t cut function on graph G(V, E): Let X =V — {s,t}, f(A4) = [6°“* (AU {s})|.
e Flow function on digraph G(V, E) with capacity Ve € E, y.: Let r € Vand A CV —r, f(A) =maximum

flow from r into A in G.

We will assume that f(A) can be evaluated efficiently for any A C X. In this case, say that the function is
presented by a value oracle. For example, if f is the cut function then for any subset of vertices A we calculate
f(A) by checking to see which edges start in A and end outside of A.

Finding a set A with minimum value can be done in polynomial time in the sense that the algorithm uses a
polynomial number of queries to the oracle computing f and, apart from these calls, runs in polynomial time.
However, it is a fairly complicated algorithm. We will sketch it next lecture. For now, we discuss some simpler
maximization algorithms.

The problem we consider is the following,
Definition 2 Find A C X such that f(A) has the mazimum possible value.

This is NP-hard, as it generalizes the maximum-cut problem. So we will consider some approximation algo-
rithms. The only assumption we will make in our first algorithm is that f(A) > 0 for each A C X. This holds
in many natural problems, such as coverage functions or cut functions.

30-1

30-2 Lecture 30: Submodular Functions

Our first algorithm is quite oblivious. It picks a set without ever querying the value oracle! So it is really more of
a structural statement about submodular functions. Still, it can be interpreted as a randomized approximation
algorithm.

Approximation Algorithm for Submodular Maximization

1. A<

2. for each i € X

3. add i to A with probability %
4. return A

Theorem 1 If f(A) >0 for all A C X, then E[f(A)] > 1 max f(B).

1
4 gcx
To prove this theorem, we need to use the following two lemmas. Before doing this, we briefly mention the
following easy-to-check fact.

Fact
If f:2% — R is submodular and A, B C X are disjoint, then f’: 2X~(BY4) 5 R where f/(T) = f(T U A) is
also submodular.

Lemma 1 Eacx/[f'(4)] > 5 [f'(0) + f'(X")] for any submodular function f' over X'.

1
2
Proof.

We prove this by induction on |X’| = n. The base case is when n = 1; so, in the algorithm either we choose)
or X’ meaning that:

Bacx [f'(A)] =5 [f'(0) + f(X)]

N =

Now when n > 1, assume that the claim is true for any subset of set X’ and we want show that this is also true
for set X’. Let z € X'/, then

Eacx/[f'(A)] = % Eacx—:[f'(A)] + % Eacx—o[f (A + 2)]

> % (;[f’(m + (X —zﬂ) +% (;[f/(z) +f’(X’>l) = %[f’(m + (X0

The first inequality used the induction hypothesis on the two submodular functions fi, fo over X — {2z} obtained
from f’ where fi1(A’) = f/(4’) and fo(A’) = f/(A’ + 2) (see the fact above). The second inequality follows
directly from the definition of submodularity.

Lemma 2 ¥ B C X', Eacx/[f/(4)] >} [f'(0) + /'(B) + f/(X' — B) + f/(X)]

Lecture 30: Submodular Functions 30-3

Proof.

Bacx[f'(A)] = BwcolBacx ol (4 UM > BacslL/'(4) + 3 f/(A' U (X'~ B))

= S Ewcsl/(4) + 3 Eacslf (AU (X'~ B)]

1.1

> LI F0) + 5 F B+ 5[F (X~ B+ 5 7(X)]

[

DN =
N =

Here we have used Lemma 1 repeatedly.

|
Proof.
Now we are ready to prove Theorem 1.
By using Lemma 2, letting f’ to be f, and assuming that B maximizes f,
1 1
Eacx[f(A)] = 7 [f(0) + f(B) + [(X = B) + f(X)] = 1 f(B)
and the reason for the last inequality is because we assumed that f is non negative.
|

Say that f is symmetric if f(A) = f(X — A) for each A C X. For example, if f is the cut function of an
undirected graph.

Corollary 1 If f is symmetric and f(A) >0 for all A C X, then E[f(A4)] > %glg)}g f(B)
Proof. We know 1 1
Eacx[f(A)] > | [f0) + F(B) + (X ~ B) + [(X)] > 5 f(B)
for any B, in particular for the B that maximizes f(B).]

The analysis of both the general and the symmetric versions are tight. For example, let X = {1,2} and
f({1}) =1 and f(A) = 0 for all other A C X. For the symmetric case let f(A) =1 if |A] = 1 and otherwise

F(A) =0.

