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Part of this lecture proved the min-max theorem for Matroid Partitioning. The proof was moved to the matroid
partitioning notes in Lecture 28.

We moved on to submodular functions and submodular maximization.

30.1 Submodular functions

Definition 1 For a finite set X, a function f : 2X → R is submodular if ∀ A,B ⊆ X, f(A) + f(B) ≥
f(A ∪B) + f(A ∩B).

Examples:

• Matroid rank: have been discussed earlier in this course.

• Cardinality function: f(A) = |A|

• Cut function: Let A be a subset of vertices in a directed graph, then f(A) = |δout(A)|

• Coverage function: For X = {S1, S2, ..., Sn} being a collection of subsets of some ground set Z, the
coverage function f(A) = | ∪

S∈A
S| , A ⊆ 2X is submodular.

• Max function: max{z ∈ A} if X ⊆ R and A ⊆ X.

• s− t cut function on graph G(V,E): Let X = V − {s, t}, f(A) = |δout(A ∪ {s})|.

• Flow function on digraph G(V,E) with capacity ∀ e ∈ E,µe: Let r ∈ V and A ⊆ V − r, f(A) =maximum
flow from r into A in G.

We will assume that f(A) can be evaluated efficiently for any A ⊆ X. In this case, say that the function is
presented by a value oracle. For example, if f is the cut function then for any subset of vertices A we calculate
f(A) by checking to see which edges start in A and end outside of A.

Finding a set A with minimum value can be done in polynomial time in the sense that the algorithm uses a
polynomial number of queries to the oracle computing f and, apart from these calls, runs in polynomial time.
However, it is a fairly complicated algorithm. We will sketch it next lecture. For now, we discuss some simpler
maximization algorithms.

The problem we consider is the following,

Definition 2 Find A ⊆ X such that f(A) has the maximum possible value.

This is NP-hard, as it generalizes the maximum-cut problem. So we will consider some approximation algo-
rithms. The only assumption we will make in our first algorithm is that f(A) ≥ 0 for each A ⊆ X. This holds
in many natural problems, such as coverage functions or cut functions.
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Our first algorithm is quite oblivious. It picks a set without ever querying the value oracle! So it is really more of
a structural statement about submodular functions. Still, it can be interpreted as a randomized approximation
algorithm.

Approximation Algorithm for Submodular Maximization

1. A← ∅
2. for each i ∈ X
3. add i to A with probability 1

2
4. return A

Theorem 1 If f(A) ≥ 0 for all A ⊆ X, then E[f(A)] ≥ 1
4 max
B⊆X

f(B).

To prove this theorem, we need to use the following two lemmas. Before doing this, we briefly mention the
following easy-to-check fact.

Fact
If f : 2X → R is submodular and A,B ⊆ X are disjoint, then f ′ : 2X−(B∪A) → R where f ′(T ) = f(T ∪ A) is
also submodular.

Lemma 1 EA⊆X′ [f ′(A)] ≥ 1
2 [f ′(∅) + f ′(X ′)] for any submodular function f ′ over X ′.

Proof.

We prove this by induction on |X ′| = n. The base case is when n = 1; so, in the algorithm either we choose ∅
or X ′ meaning that:

EA⊆X′ [f ′(A)] =
1

2
[f ′(∅) + f ′(X ′)]

Now when n ≥ 1, assume that the claim is true for any subset of set X ′ and we want show that this is also true
for set X ′. Let z ∈ X ′, then

EA⊆X′ [f ′(A′)] =
1

2
EA′⊆X′−z[f ′(A′)] +

1

2
EA′⊆X′−z[f ′(A′ + z)]

≥ 1

2

(
1

2
[f ′(∅) + f ′(X ′ − z)]

)
+

1

2

(
1

2
[f ′(z) + f ′(X ′)]

)
≥ 1

2
[f ′(∅) + f ′(X ′)].

The first inequality used the induction hypothesis on the two submodular functions f1, f2 over X−{z} obtained
from f ′ where f1(A′) = f ′(A′) and f2(A′) = f ′(A′ + z) (see the fact above). The second inequality follows
directly from the definition of submodularity.

Lemma 2 ∀ B ⊆ X ′ , EA⊆X′ [f ′(A)] ≥ 1
4 [f ′(∅) + f ′(B) + f ′(X ′ −B) + f ′(X ′)]
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Proof.

EA⊆X [f ′(A)] = EA′⊆B [EA′⊆X−B [f ′(A′ ∪A′)]] ≥ EA′⊆B [
1

2
f ′(A′) +

1

2
f ′(A′ ∪ (X ′ −B))]

=
1

2
EA′⊆B [f ′(A′) +

1

2
EA′⊆B [f ′(A′ ∪ (X ′ −B))]]

≥ 1

2
[
1

2
f ′(∅) +

1

2
f ′(B)] +

1

2
[
1

2
f ′(X ′ −B) +

1

2
f ′(X ′)]

Here we have used Lemma 1 repeatedly.

Proof.

Now we are ready to prove Theorem 1.

By using Lemma 2, letting f ′ to be f , and assuming that B maximizes f ,

EA⊆X [f(A)] ≥ 1

4
[f(∅) + f(B) + f(X −B) + f(X)] ≥ 1

4
f(B)

and the reason for the last inequality is because we assumed that f is non negative.

Say that f is symmetric if f(A) = f(X − A) for each A ⊆ X. For example, if f is the cut function of an
undirected graph.

Corollary 1 If f is symmetric and f(A) ≥ 0 for all A ⊆ X, then E[f(A)] ≥ 1
2 max
B⊆X

f(B).

Proof. We know

EA⊆X [f(A)] ≥ 1

4
[f(∅) + f(B) + f(X −B) + f(X)] ≥ 1

2
f(B)

for any B, in particular for the B that maximizes f(B).

The analysis of both the general and the symmetric versions are tight. For example, let X = {1, 2} and
f({1}) = 1 and f(A) = 0 for all other A ⊆ X. For the symmetric case let f(A) = 1 if |A| = 1 and otherwise
f(A) = 0.


