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In this lecture, we discuss polytopes whose extreme points are independent sets in a matroid or in the com-
mon intersection of two matroids. We also introduce the uncrossing technique, which is quite useful in other
combinatorial problems.

Let M be a matroid over a set X, together with a weight function w : M → R. We can formulate the maximum
weight independent set problem over X as a linear program. Specifically, we consider the space of functions
x : X → R, and take the linear program

max
∑
e∈X

w(e)x(e)

s.t. x(A) ≤ r(A) ∀A ⊂ X
x ≥ 0

in particular, the constraints guarantee that 0 ≤ x(e) ≤ 1 for all e ∈ X, because r({e}) ≤ 1, so integral feasible
points in the constraint polyhedron correspond to indicator functions over X. What’s more, integral points
also correspond to independent sets in the matroid. If x = χB (i.e. is the indicator vector of a subset B ⊆ X)
lies in the polytope above, then |B| = x(B) ≤ r(B) ≤ |B|, so r(B) = |B|, and so B is independant. Thus the
corresponding integer linear programming problem for this LP corresponds exactly to the maximal independent
set problem.

Summarizing the discussion so far, let PM = {x ∈ RX
≥0 : x(A) ≤ r(a) for each A ⊆ X}. We have shown the

following:

Lemma 1 PM ⊆ [0, 1]X and integral points of PM are exactly the indicator vectors of independent sets inM.

It turns out that (surprise surprise!) all extreme points are integral. Our proof will use an interesting technique
known as the uncrossing method, which shows there is a well-structured set of tight constraints that allow us to
conclude an extreme point is integral. We note that the constraint matrix of PM is itself not totally unimodular.
For example, the constraints corresponding to subsets A = {1, 2}, B = {2, 3} and C = {1, 3} for a matrix that
is not totally unimodular.

Theorem 1 Let x ∈ PM be an extreme point. Then x is integral.

Proof. For A ⊆ X we will let χA ∈ RX denote the {0, 1}-indicator vector of A. The proof breaks into two
main steps. First, we show there is a well-structured basis of tight constraints for x. Then we show, despite the
fact that the constraint matrix of PM is not totally unimodular, this matrix for this particular basis of tight
constraints is totally unimodular so x must be integral.

We assume xi > 0 for each i ∈ X. If not, then the restriction of x to X − {i} can easily be checked to be an
extreme point of PM−i and it suffices to prove all extreme points of this polytope are integral.

We say C ⊆ 2X is a chain if A,B ∈ C implies either A ⊆ B or B ⊆ A. So the items in a chain form a “nested
family”. Not that a chain is laminar, but not necessarily the other way around.
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Let C to be the largest chain only containing subsets A for which we have a tight constraint, x(A) = r(A), and
such that the corresponding vectors χA are independent. We claim that the χA span RX . To that end, we let
span(C) be shorthand for span({χA : A ∈ C}).

Suppose B ⊆ X is such that r(B) = x(B) yet χB is not in span(C). Among such B, choose one that minimizes
the size of:

τ(B) = {A ∈ C : A 6⊂ B and B 6⊂ A}

Note that we must have τ(B) must contain at least one element, or else C ∪ {B} would be a chain of linearly
independent vectors which is larger than C.

Let T ∈ τ(B), so B 6∈ T and T 6∈ B. Note by submodularity of the rank,the fact that both B and T correspond
to tight constraints, and because x satisfies all constraints of PM we have

r(B) + r(T ) = x(B) + x(T )

= x(B ∪ T ) + x(B ∩ T )

≤ r(B ∪ T ) + r(B ∩ T )

≤ r(B) + r(T )

So equality must hold: x(B∪T )+x(B∩T ) = r(B∪T )+r(B∩T ). Since x(B∪T ) ≤ r(B∪T ), x(B∩T ) ≤ r(B∩T ),
we have both x(B ∪ T ) = r(B ∪ T ), x(B ∩ T ) = r(B ∩ T ).

We will show τ(B∪T ), τ(B∩T ) ( τ(B). By our choice of B, this means χB∪T , χB∩T ∈ span(C). This is clearly
in contradiction to our assumption that χB 6∈ span(C) because

χB = χB∪T + χB∩T − χT ∈ span(C)

so all that remains is to prove τ(B ∪ T ), τ(B ∩ T ) ( τ(B).

This is most easily shown by drawing out Venn diagrams, but we’ll also provide a textual description.

Consider S in C −{T}. Then either S ⊂ T , or T ⊂ S. If S ⊂ T , then S ⊂ B∪T and so S 6∈ τ(B∪T ). If T ⊂ S,
then B ∩ T ⊂ S, so S 6∈ τ(B ∩ T ). If S ∈ τ(B ∪ T ) but S 6∈ τ(B), then we would have to have T ⊂ S. This
also shows S ⊂ B, because if B ⊂ S, then B ∪ T ⊂ S. But then T ⊂ B, which is a contradiction. Similarily, if
S ∈ τ(B∩T ) but S 6∈ τ(B), then S ⊂ T and B ⊂ S, so B ⊂ T , another contradiction. We finish this conclusion
by noticing that T 6∈ τ(B ∩ T ), τ(B ∪ T ) by obvious relations.

Thus we conclude that C forms a basis of RX .

Now our homework comes in handy. Consider the laminar constrainted matching problem, over the Bipartite
graph whose left vertices are subsets of X, and with only one right vertex, with an edge between every left
vertex. We consider LL = C as a laminar family over the left vertices, and LR = ∅, with bA = r(A) for A ∈ C.
In Assignment 3, you showed the constraint matrix for this LP is totally unimodular. But the constraints
corresponding to the left-side of the graph are precisely the constraints of PM corresponding to sets C. Thus,
x is integral.

29.0.1 Separating the Constraints

There are exponentially many constraints, so one naturally wonders if it is possible to separate them in polyno-
mial time. Indeed this is the case, but it amounts to determining if the minimum of the following submodular
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function is negative or not:
f : 2X → R where f(A) = r(A)− x(A).

It is possible to minimize a submodular function in polynomial time. We will sketch the details in a later lecture.

29.1 Base Polytope

One can easily prove PM ∩ {x ∈ RX : x(X) = r(X)} is integral by showing there is a chain that forms a basis
of tight constraints that includes X itself. For example, let C be the largest such chain and use uncrossing to
arrive at a contradiction under the assumption that C does not form a basis.

29.2 Matroid Intersection Polytope

The matroid intersection problem can be formulated as an LP with integral extreme points in a very similar
manner. We consider two matroids M and N , take the same solution space as the maximal independent set
LP, and find solutions such that

max
∑
e∈X

w(e)x(e)

s.t. x(A) ≤ rM (A) ∀A ⊂ X
x(A) ≤ rN (A) ∀A ⊂ X

x ≥ 0

Theorem 2 Extreme points of this linear program are integral.

The proof is mostly identical to the case of one matroid, we just sketch the details. The extreme points of
this set are integral, which can be verified from the uncrossing technique of the last problem. Here we will end
up with a laminar family of tight constraints CM and CN over each matroid, rather than a chain, prove that
span(CM ∪ CN ) is full, and then use the laminar familiies LL = CM , LR = CN to prove integrality as the two
chains correspond to submatrices of the same laminar-constrained matching problem from the homework.

Our homework problem does not generalize to intersections of three or more matroids, and for good reason!
The matroid intersection problem for more than 2 matroids is NP complete. For example, in a directed graph
we can have one matroid assert each vertex has indegree at most 1, another assert each vertex has outdegree 1,
and one final matroid assert the underlying set of undirected edges is acyclic. Then there is a set of size |V | − 1
that is independent in all matroids if and only if there is a Hamiltonian path in the directed graph.


