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28.1 Matroid Intersection

The Matroid Intersection problem is to find the largest common independent set Y ∈ I1∩I2 whenM1 = (X, I1),
M2 = (X, I2) are matroids. The algorithm to solve the problem is given in the last lecture.

Recall that the heart of the algorithm involves a graph GY where Y ∈ I1 ∩ I2. We defined the following:

• GY is a directed bipartite graph with vertices X. One side is Y and the other is X − Y .

• For each a ∈ Y, b ∈ X − Y we add directed edge ab if Y − a + b ∈ I1.

• For each a ∈ Y, b ∈ X − Y we add directed edge ba if Y − a + b ∈ I2.

• Y1 = {x ∈ Y −X : Y ∪ {x} ∈ I1}

• Y2 = {x ∈ Y −X : Y ∪ {x} ∈ I2}

If there is a path from Y1 to Y2 in GY , we let P be the vertices on a shortest Y1 − Y2 path. We will show
Y ′ := (Y − P ) ∪ (P − Y ) ∈ I1 ∩ I2 and |Y ′| = |Y |+ 1, so we have “augmented” Y to a larger set. We will also
show that if there is no Y1 − Y2 path, then Y is already a maximum-size set in I1 ∩ I2.

We use the notation above. In particular, Y ′ is obtained by alternating Y along a shortest Y1 − Y2 path with
vertex set P .

Lemma 1 |Y ′| = |Y |+ 1.

Proof. P is a path that alternates between sides X−Y and Y . It starts and ends in X−Y , so |P ∩ (X−Y )| =
|P ∩ Y |+ 1. Thus, |Y ′| = |Y |+ 1.

Lemma 2 Y ′ ∈ I1 ∩ I2.

Proof. Let P = b0, a1, b1, · · · , ak, bk be a shortest Y1 − Y2 path.

We use the following notation. For Z ⊆ X we let ri(Z) denote the rank of Z in Mi. If Z ∈ Ii and x ∈ X
is such that Z + x 6∈ Ii we let Ci(Z, x) denote the unique circuit of matroid Mi contained in Z + x (c.f. the
previous lecture).

Note Y + b0 ∈ I1. Further, for each 1 ≤ i ≤ k we have Y + b0 + bi 6∈ I1, otherwise bi ∈ Y1 and the subpath of P
starting at bi would be a shorter Y1 − Y2 path. Also note Y + bi 6∈ I1, again for the same reason. So, for each
1 ≤ i ≤ k we have

C1(Y, bi) = C1(Y + b0, bi).
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Claim 1 For all 1 6 i 6 k,
i) ai ∈ C1(Y + b0, bi),
ii) ai /∈ C1(Y + b0, bi) for i < j ≤ k.

Proof. For i) we know ai ∈ C1(Y, bi) because aibi is an edge (i.e. Y + bi − ai ∈ I1).
So ai ∈ C1(Y + b0, bi).

We prove ii) by induction.

For ii), otherwise P
′

= b0, a1, b1, · · · , aj , bj , · · · , ak, bk is a shorter path.

Returning to the proof of Lemma 2, we first prove Y ′ ∈ I1. In particular, we prove by induction on 0 ≤ i ≤ k
that Y (i) ∈ I1 where

Y (i) = Y − {a1, · · · , ai} ∪ {b0, · · · , bi} ∈ I1.

For i = 0, we already know Y (0) = Y + b0 ∈ I1.

Inductively, for i > 0 we note Y (i) = Y (i−1) − ai + bi and, by induction, we know Y (i−1) ∈ I1. If we have
Y (i−1) + bi ∈ I1 then we are done already (removing ai would leave it in I1).

Otherwise, let C := C1(Y (i−1), bi). We show ai ∈ C. Note, by ii) in the claim, that C1(Y + b0, bi) ⊆ Y (i−1) + bi.
So, by uniqueness of circuits, C1(Y + b0, bi) = C. By i) in the claim, we know ai ∈ C1(Y + b0, bi), i.e. ai ∈ C.

A symmetric argument (starting from i = k and going down to 0) shows Y ′ ∈ I2.

28.2 Min-Max Relationship

Theorem 1 For any two matroidsM1 = (X, I1) andM2 = (X, I2) with rank functions r1 and r2 respectively,
we have:

max
Y ∈I1∩I2

|Y | = min
Q⊆X

r1(X −Q) + r2(Q).

Furthermore, for any Y such that GY has no Y1 − Y2 path (using the notation from the algorithm) we have that
Y is a maximum-cardinality set in I1 ∩ I2.

The latter statement in the theorem says when the algorithm above fails to find a Y1−Y2 path then Y is already
has maximum size.

Proof. As with almost all min/max relationships, we start with the easier part showing the “max” side is at
most the “min” side. Let Y ∈ I1 ∩ I2 and Q ⊆ X. Simply put,

|Y | = |Y −Q|+ |Y ∩Q| ≤ r1(X −Q) + r1(X −Q)

because Y −Q ∈ I1 and is a subset of X and Y ∩Q ∈ I2 and is a subset of Q.

To see equality, let Y ∈ I1∩ I2 be a set such that there is no Y1−Y2 path in GY . Let R be all vertices reachable
from Y1 in GY (it could be that R = ∅ if Y1 = ∅, i.e. Y is a base in I1).

Claim 2 r2(R) = |Y ∩R|.
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Proof. Otherwise r2(R) > |Y ∩R|. Then there is some y ∈ R−Y such that (Y ∩R) +y ∈ I2. Note Y +y 6∈ I2,
otherwise y ∈ R ∩ Y2 which contradicts the fact there is not Y1 − Y2 path in GY . It also cannot be that
C2(Y, y)∩ (Y −R) = ∅, otherwise the entire circuit would be contained in (Y ∩R) + y which is impossible. But
then yx is an edge for some x ∈ C2(Y, y) ∩ (Y −R), contradicting the fact that y is reachable but x is not.

In a similar way, one can prove r1(X −R) = |Y −R|. Thus,

|Y | = |Y −R|+ |Y ∩R| = r1(X −R) + r2(R).

28.3 Matroid Partition

LetMi(X, Ii) be matroids for 1 ≤ i ≤ k. Note they are all over a common ground set. A partitionable subset
of X is a set Y such that Y can be expressed as the disjoint union of sets Y1 ∈ I1, . . . , Yk ∈ Ik. Naturally, we
are interested in finding the largest partitionable subset of X.

Application

Matroid Colouring: Partition X into the fewest independent sets (i.e. determine the smallest k for which X
is itself partitionable when Mi(X, Ii) are the same matroid).

Base Packing: Find the largest collection of pairwise-disjoint bases B1, . . . , Bk. For example, how many edge-
disjoint spanning trees can you find? To find this, pick the largest k such that the largest partitionable set
between the k identical matroids has size k · rank(X).

Maker/Breaker: Two players take turns removing edges from an undirected graph. Player 2 wins if the edges
they remove contains a spanning tree, player 1 wins if the set of edges they remove would disconnect the original
graph. So exactly one player wins.

Who has the winning strategy? It turns out player 2 has the winning strategy if and only if the graph contains
two edge-disjoint spanning trees. The last exercise has you working out the details.

Reduction to Matroid Intersection Finding the largest partitionable set reduces to matroid intersection. In
particular, we consider the following two matroids. over the common ground set X = {(x, i) : x ∈ X, 1 ≤ i ≤ k}.

In the first matroid M, we have Y being independent if for each 1 ≤ i ≤ k we have Y i := {x ∈ X : (x, i) ∈ Y }
being a member of Ii. It is easy to verify this forms a matroid and the rank function is

r(Y ) =

k∑
i=1

ri(Y i)

where ri is the rank function of Mi.

In the second matroid M′ we have Y ⊆ X being independent if for each x ∈ X we have |{i : (x, i) ∈ Y }| ≤ 1.
The rank function is

r′(Y ) = |{x ∈ X : (x, i) ∈ Y for some i}|.

That is, the first matroidM selects an independent set in each matroidMi and the second matroidM′ ensures
each item is allocated to at most one of the Mi.

The following correspondence is clear.
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Lemma 3 If Y = Y1∪̇ . . . ∪̇Yk is a partitionable subset of X (i.e. Yi ∈ Ii) then {(x, i) : 1 ≤ i ≤ k, x ∈ Yi}
is independent in both M and M′. Conversely, if Y is independent in both M and M′ then Y = ∪iY i is
partitionable with the obvious partition {Y i ∈ Ii}ki=1.

So, we can find a maximum-size partitionable Y ⊆ X by finding a maximum-size Y ⊆ X that is independent

in both M and M′ using the matroid intersection algorithm. Furthermore, the running time is polynomial
(assuming the independence oracles for each Mi runs in polynomial time).

Finally, using the min/max relationship for matroid intersection we can get min/max relationship for the largest
partitionable set.

Theorem 2

max
Y⊆X s.t.

Y is partitionable

|Y | = min
Q⊆X

|X −Q|+
k∑

i=1

ri(Q)

where ri is the rank function ofMi.

Proof. If Y = Y1∪̇ . . . ∪̇Yk is partitionable (with Yi ∈ Ii) then for any Q ⊆ X

|Y | = |Y −Q|+ |Y ∩Q| ≤ |X −Q|+ |Y ∩Q| = |X −Q|+
∑
i

|Yi ∩Q| ≤ |X −Q|+
∑
i

ri(Q)

as Yi ∩Q is an independent (in Mi) subset of Q.

Conversely, let Y ⊆ X be a maximum common independent set between matroid M and M′. Let Q ⊆ X be
such that

|Y | = r(Q) + r′(X −Q).

Such an Q exists by Theorem 1. Let A = {x ∈ X : (x, i) ∈ Q for each 1 ≤ i ≤ k}.

Note r′(Z) is just the number of distinct items of X appearing with at least one index in Z. Thus, r′(X −Q) =
|X −A|. Further, if we let Qi = {x : (x, i) ∈ Q} then r(Q) =

∑
i ri(Qi) ≥ ri(A), as A ⊆ Qi for each i.

That is,

|Y | ≥
k∑

i=1

ri(A) + |X −A|

as required.


