CMPUT 675: Topics in Combinatorics and Optimization
 Fall 2016

 Lecture 27 (Nov 16): Matriods: Min-Weight Bases, Intersection
 Scribe: Chris Martin

 Lecturer: Zachary Friggstad
 Scribe: Chris Martin

We begin by discussing some properties of matroids and then present the matroid intersection algorithm. The proof of correctness appeared in the next lecture.

27.1 Matroid Rank and Circuits

Let $M = (X, \mathcal{I})$ be a matroid.

Lemma 1 Let $A \subseteq X$. Let $\mathcal{I}_A = \{B \subseteq A : B \in \mathcal{I}\}$. Then $M_A = (A, \mathcal{I}_A)$ is a matroid.

Definition 1 Let $A \subseteq X$. The **rank** of A is given by $r(A) = \max\{|B| : B \subseteq A, B \in \mathcal{I}\}$.

Lemma 2 Let $A, B \subseteq X$. Then

1. $r(A) \le |A|$ 2. $A \subseteq B \implies r(A) \le r(B)$ 3. $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

Proof. Properties 1 and 2 follow directly from the definition of rank. We proceed to prove property 3.

Let $J \subseteq A \cap B$, $J \in \mathcal{I}$ be such that $|J| = r(A \cap B)$. Let $K \subseteq A - B$ be such that |J| + |K| = r(A), $J \cup K \in \mathcal{I}$ (one exists because we can extend any independent set to a base of the matroid restricted to A). Similarly, let $L \subseteq B - A$ be such that $|J| + |K| + |L| = r(A \cup B)$, $J \cup K \cup L \in \mathcal{I}$. By construction and properties of matroids, all of J, K, L must exist. We then have

$$r(A) + r(B) = |J \cup K| + r(B)$$

$$\geq |J \cup K| + |J \cup L|$$

$$= |J \cup K \cup L| + |J|$$

$$= r(A \cup B) + r(A \cap B),$$

where inequality holds because $J \cup B$ is an independent set and the second-last equality holds since all sets are disjoint.

Property 3 is also called the *submodularity* property. Together with properties 1 and 2, property 3 is equivalent to the following statement:

$$\forall B \subseteq A, x \notin A, r(B \cup \{x\}) - r(B) \ge r(A \cup \{x\}) - r(A).$$

This is a diminishing returns property, which is a key feature of submodularity. We will see how this property will be useful shortly.

Definition 2 A subset $C \subseteq X$ is a *circuit* if $C \notin \mathcal{I}$ but $C - \{x\} \in \mathcal{I}$ for all $x \in C$.

Lemma 3 Let $y \in \mathcal{I}$, $x \in X$ such that $Y \cup \{x\} \notin \mathcal{I}$. Then there is a unique circuit $C \subseteq Y \cup \{x\}$, denoted C(Y, x).

Proof. Since $Y \cup \{x\} \notin \mathcal{I}$, there must exist some circuit $C \subseteq Y \cup \{x\}$ (e.g. pick any minimal dependent subset of $Y \cup \{x\}$). We will now prove this circuit is unique.

Suppose for the sake of contradiction that C_1, C_2 are distinct circuits in $Y \cup \{x\}$. Note that since $Y \in \mathcal{I}$, $x \in C_1, C_2$, and $C_1 \not\subseteq C_2$, and so some $y \in C_1 - C_2$ exists. We will show there exists some circuit $C_3 \subseteq (C_1 \cup C_2) - \{x\} \subseteq Y$ - this will imply $Y \notin \mathcal{I}$.

We have

$$\begin{aligned} |C_1| - 1 + r(C_1 \cup C_2 - \{x, y\}) + |C_2| - 1 &= r(C_1) + r(C_1 \cup C_2 - \{x, y\}) + r(C_2) \\ &\geq r(C_1) + r(C_1 \cup C_2 - \{y\}) + r(C_2 - \{x\}) \\ &\geq r(C_1 - \{y\}) + r(C_1 \cup C_2) + r(C_2 - \{x\}) \\ &= |C_1| - 1 + r(C_1 \cup C_2) + |C_2| + 1, \end{aligned}$$

where the two inequalities follow by submodularity of the rank function. Thus, $r(C_1 \cup C_2) \leq r(C_1 \cup C_2 - \{x, y\})$. But $C_1 \cup C_2 - \{x, y\} \subseteq C_1 \cup C_2$, so $r(C_1 \cup C_2) = r(C_1 \cup C_2 - \{x, y\}) = r(C_1 \cup C_2 - \{x\})$. Thus, $C_3 = C_1 \cup C_2 - \{x\}$ is not of full rank and so $C_3 \notin \mathcal{I}$.

27.2 Matroid Intersection (Intro)

Given matroids $M_1 = (X, \mathcal{I}_1)$ and $M_2 = (X, \mathcal{I}_2)$ over the common ground set X, the matroid intersection problem is to find some $Y \subseteq X$, $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$, such that |Y| is maximized (or certify $\mathcal{I}_1 \cap \mathcal{I}_2 = \emptyset$).

We present an incremental algorithm to solve this problem, that takes as input some $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ and returns either some $Y' \in \mathcal{I}_1 \cap \mathcal{I}_2$ such that |Y'| = |Y| + 1, or determines Y is a maximum-size set in $\mathcal{I}_1 \cap \mathcal{I}_2$. We will see the proof of why this algorithm is correct in the next lecture.

Algorithm 1 MATROID-INTERSECTION Algorithm

Input: Matroids $M_1 = (X, \mathcal{I}_1), M_2 = (X, \mathcal{I}_2)$ and $Y \subseteq X$ such that $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$. **Output**: $Y' \subseteq X$ such that $Y' \in \mathcal{I}_1 \cap \mathcal{I}_2$ and |Y'| = |Y| + 1, or certify Y is maximum.

 $E \leftarrow \emptyset$ $\{Will be a set of directed edges in a graph with vertices X\}$ for $a \in Y, b \in X - Y$ do if $Y - \{a\} \cup \{b\} \in \mathcal{I}_1$ then $E \leftarrow E \cup \{ab\}$ end if if $Y - \{a\} \cup \{b\} \in \mathcal{I}_2$ then $E \leftarrow E \cup \{ba\}$ end if end for $Y_1 \leftarrow \{x \in X - Y : Y \cup \{x\} \in \mathcal{I}_1\}$ $Y_2 \leftarrow \{x \in X - Y : Y \cup \{x\} \in \mathcal{I}_2\}$ Let $\mathcal{G}_Y = (Y \cup (X - Y); E)$ be a directed bipartite graph if no $Y_1 \to Y_2$ path exists in \mathcal{G}_Y then return "Y is maximum" else $P \leftarrow$ vertices in a shortest $Y_1 \rightarrow Y_2$ path in \mathcal{G}_Y return $(Y - P) \cup (P - Y)$ end if