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We begin by discussing some properties of matroids and then present the matroid intersection algorithm. The
proof of correctness appeared in the next lecture.

27.1 Matroid Rank and Circuits

Let M = (X, I) be a matroid.

Lemma 1 Let A ⊆ X. Let IA = {B ⊆ A : B ∈ I}. Then MA = (A, IA) is a matroid.

Definition 1 Let A ⊆ X. The rank of A is given by r(A) = max{|B| : B ⊆ A,B ∈ I}.

Lemma 2 Let A,B ⊆ X. Then

1. r(A) ≤ |A|

2. A ⊆ B =⇒ r(A) ≤ r(B)

3. r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)

Proof. Properties 1 and 2 follow directly from the definition of rank. We proceed to prove property 3.

Let J ⊆ A ∩B, J ∈ I be such that |J | = r(A ∩B). Let K ⊆ A−B be such that |J |+ |K| = r(A), J ∪K ∈ I
(one exists because we can extend any independent set to a base of the matroid restricted to A). Similarly, let
L ⊆ B−A be such that |J |+ |K|+ |L| = r(A∪B), J ∪K ∪L ∈ I. By construction and properties of matroids,
all of J,K,L must exist. We then have

r(A) + r(B) = |J ∪K|+ r(B)

≥ |J ∪K|+ |J ∪ L|
= |J ∪K ∪ L|+ |J |
= r(A ∪B) + r(A ∩B),

where inequality holds because J ∪B is an independent set and the second-last equality holds since all sets are
disjoint.

Property 3 is also called the submodularity property. Together with properties 1 and 2, property 3 is equivalent
to the following statement:

∀B ⊆ A, x /∈ A, r(B ∪ {x})− r(B) ≥ r(A ∪ {x})− r(A).

This is a diminishing returns property, which is a key feature of submodularity. We will see how this property
will be useful shortly.
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Definition 2 A subset C ⊆ X is a circuit if C /∈ I but C − {x} ∈ I for all x ∈ C.

Lemma 3 Let y ∈ I, x ∈ X such that Y ∪ {x} /∈ I. Then there is a unique circuit C ⊆ Y ∪ {x}, denoted
C(Y, x).

Proof. Since Y ∪ {x} /∈ I, there must exist some circuit C ⊆ Y ∪ {x} (e.g. pick any minimal dependent subset
of Y ∪ {x}). We will now prove this circuit is unique.

Suppose for the sake of contradiction that C1, C2 are distinct circuits in Y ∪ {x}. Note that since Y ∈ I,
x ∈ C1, C2, and C1 6⊆ C2, and so some y ∈ C1 − C2 exists. We will show there exists some circuit C3 ⊆
(C1 ∪ C2)− {x} ⊆ Y - this will imply Y /∈ I.

We have

|C1| − 1 + r(C1 ∪ C2 − {x, y}) + |C2| − 1 = r(C1) + r(C1 ∪ C2 − {x, y}) + r(C2)

≥ r(C1) + r(C1 ∪ C2 − {y}) + r(C2 − {x})
≥ r(C1 − {y}) + r(C1 ∪ C2) + r(C2 − {x})
= |C1| − 1 + r(C1 ∪ C2) + |C2|+ 1,

where the two inequalities follow by submodularity of the rank function. Thus, r(C1∪C2) ≤ r(C1∪C2−{x, y}).
But C1∪C2−{x, y} ⊆ C1∪C2, so r(C1∪C2) = r(C1∪C2−{x, y}) = r(C1∪C2−{x}). Thus, C3 = C1∪C2−{x}
is not of full rank and so C3 /∈ I.

27.2 Matroid Intersection (Intro)

Given matroids M1 = (X, I1) and M2 = (X, I2) over the common ground set X, the matroid intersection
problem is to find some Y ⊆ X, Y ∈ I1 ∩ I2, such that |Y | is maximized (or certify I1 ∩ I2 = ∅).

We present an incremental algorithm to solve this problem, that takes as input some Y ∈ I1 ∩ I2 and returns
either some Y ′ ∈ I1 ∩ I2 such that |Y ′| = |Y | + 1, or determines Y is a maximum-size set in I1 ∩ I2. We will
see the proof of why this algorithm is correct in the next lecture.
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Algorithm 1 Matroid-Intersection Algorithm

Input: Matroids M1 = (X, I1),M2 = (X, I2) and Y ⊆ X such that Y ∈ I1 ∩ I2.
Output: Y ′ ⊆ X such that Y ′ ∈ I1 ∩ I2 and |Y ′| = |Y |+ 1, or certify Y is maximum.

E ← ∅ {Will be a set of directed edges in a graph with vertices X}
for a ∈ Y, b ∈ X − Y do

if Y − {a} ∪ {b} ∈ I1 then
E ← E ∪ {ab}

end if
if Y − {a} ∪ {b} ∈ I2 then

E ← E ∪ {ba}
end if

end for
Y1 ← {x ∈ X − Y : Y ∪ {x} ∈ I1}
Y2 ← {x ∈ X − Y : Y ∪ {x} ∈ I2}
Let GY = (Y ∪ (X − Y );E) be a directed bipartite graph
if no Y1 → Y2 path exists in GY then

return “Y is maximum”
else
P ← vertices in a shortest Y1 → Y2 path in GY
return (Y − P ) ∪ (P − Y )

end if


