
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 26 (November 14): Matroids
Lecturer: Zachary Friggstad Scribe: Bradley Hauer

26.1 Introduction to Matroids

A matroid is an abstract mathematical structure with applications to several areas of mathematics and com-
puting science, including combinatorics and optimization. We will begin with the definition of a matroid, and,
in the next section, will look at several examples.

Definition 1 Let X be a finite set of items, and I ⊆ 2X (where 2X is the set of subsets of X). Then M = (X, I)
is a matroid if it satisfies all three of these properties:

1. ∅ ∈ I

2. If A ∈ I and B ⊆ A, then B ∈ I

3. (Exchange property) If A,B ∈ I and |A| < |B|, then ∃ z ∈ B −A such that A ∪ {z} ∈ I

The set X is typically called the ground set, and the sets in I are called the independent sets of the matroid.
In the next section, we will see some examples that should help to clarify these ideas.

26.2 Examples of Matroids

26.2.1 Graphic Matroid

Let G = (V ;E) be a graph. Let I = {F ⊆ E : (V ;F) has no cycles}. Then M = (E, I) is a matroid.

Consider the three “matroid axioms” we saw above: The first clearly holds, since an empty set of edges trivially
contains no cycles. The second is also easy to see, as if a set of edges contains no cycles, certainly no subset of
that set can have a cycle.

The third property is only slightly harder to prove. If A,B ∈ I and |A| < |B|, then (V ;A) has more connected
components than (V ;B), so there is some z ∈ B that connects two components of (V ;A). To see this, use
the pigeonhole principle to see there are two nodes u, v in different components of (V ;A) that lie in the same
component of (V ;B), so some edge z of a u − v path in (V ;B) bridges different components of (V ;A). Thus,
(V ;A ∪ {z}) still has no cycles, therefore A ∪ {z} ∈ I. So M is indeed a matroid.

26.2.2 Vector Matroid

Let V be a vector space, and let X ⊆ V be finite. Let I = {Y ⊆ X : the vectors in Y are linearly independent}.
Them M = (X, I) is a matroid.

26-1

26-2 Lecture 26: Matroids

For example, X could be the columns of a matrix with all its columns distinct (or we could modify the definition
slightly to allow X to be a multiset, if we want to allow matrices with identical columns). Then I is simply the
set of sets of linearly independent vectors.

26.2.3 Laminar Matroid

Let X be a finite set of items. Let LX be a laminar family over X (see Assignment 3 for a definition). Also, for
each A ∈ LX , let bA ∈ Z, bA ≥ 0. Finally, let I = {Y ⊆ X : |Y ∩ A| ≤ bA ∀A ∈ LX}. Them M = (X, I) is a
matroid.

The bA values set limits on the number of items which may be chosen from each set in the laminar family LX .
Any subset which respects these limits, containing at most bA items from each A ∈ LX , is an independent set.

26.2.4 Transversal Matroid

Let X be a finite set of items, and F ⊆ 2X . Let I = {Y ⊆ X : ∃ injective T : Y → F s.t.∀ a ∈ Y, a ∈ T (a)}.
Them M = (X, I) is a matroid.

Essentially, this gives a matroid structure to the notion of a matching; a subset Y ⊂ X is an independent set if
there exists a matching that saturates Y .

26.2.5 Gammoid

Let G = (V ;E) be a directed graph. Let A,B ⊆ V . Let I = {A′ ⊆ A : ∃ vertex disjoint paths from A′ to B}.
Then M = (A, I) is a matroid.

The definition of I requires that there exists a set of vertex-disjoint paths, each starting at a vertex in A′ and
ending at a vertex in B, such that there is a path starting at each element of A′. Note that there is an obvious
relationship between gammoids and maximum flow problems.

26.2.6 Bond Matroid

Let G = (V ;E) be an undirected, connected graph. Let I = {F ⊆ E : (V ;E − F) is connected}. Then
M = (E, I) is a matroid.

So, a set of edges is an independent set if removing the edges in that set does not disconnect the graph.

26.2.7 Algebraic Matroid

Let F,K be fields and F ⊆ K (so K is an extension field of F). Let X be a finite subset of K, and I = {Y ⊆
X : F [Y] has transcendence degree |Y |}. Them M = (X, I) is a matroid.

The terminology used here goes a bit beyond the scope of this course; it is given here simply as another example.

Lecture 26: Matroids 26-3

Independence Oracles

We briefly discuss how we will represent matroids for the purpose of computation, since the set of independent
sets could be exponentially large. For this we will use the concept of an independence oracle:

Definition 2 An independence oracle for M = (X, I) is an algorithm which, given Y ⊆ X, decides, in
polynomial time, if Y ∈ I.

The notion of polynomial time in the definition of an independence oracle can get a bit murky. For example,
with a vector matroid we have to test for linear independence of vectors. The point is that whenever we actually
use matroids we are dealing with a larger input (e.g. a graph or a matrix) and each query should run in time
that is polynomial in the input. We don’t dwell on this issue much longer, the algorithms we discuss will only
invoke the independence oracle a polynomial number of times. So, given an efficient implementation of such an
oracle, the overall algorithm will run in polynomial time.

So, if an algorithm needs to take a matroid M = (X, I) as input, we will assume it takes the set X, and an
independence oracle which can check membership in I and that this check can be done efficiently. We will say
that the matroid M is specified by the independence oracle.

26.3 Bases

In this section, we will introduce the concept of a base of a matroid, introduce a related combinatorial problem,
and give an algorithm for solving it.

Now we can move on to bases.

Definition 3 A base of a matroid M = (X, I) is a set B ∈ I such that if B ⊆ B′ and B′ ∈ I, then B = B′.

In other words, a base is a maximal independent set. In a graphic matroid over a connected graph (where
independent sets are forests), a base is a spanning tree. In a vector matroid (where independent sets are sets of
linearly independent vectors), a base is a basis for the span of the set of vectors. In a bond matroid, a base is
a set of edges the removal of which leaves a spanning tree (i.e. removing any other edge would disconnect the
graph).

It is a basic property of spanning trees that any spanning tree has size |V | − 1; so, in a graphic matroid, all
bases are of equal size. We will now show that this property holds for matroids in general.

Lemma 1 Let B and B′ be bases for matroid M = (X, I). Then |B| = |B′|.

Proof. If |B| < |B′|, by the exchange property (property 3 in the definition of a matroid), there exists some
z ∈ B′ − B such that B ∪ {z} ∈ I, so B is not maximal, and so is not a base. So we cannot have |B| < |B′|.
Similarly, by simply reversing B and B′ in the above, we cannot have |B| > |B′|. Therefore |B| = |B′|.

So, by this lemma, given a connected graph G = (V ;E), all maximal sets of edges whose removal does not
disconnect G are of equal size, since these sets are the bases of the bond matroid for that graph. This also shows
that all spanning trees are of equal size, all bases of the span of a set of vectors are of equal size, and so on.

26-4 Lecture 26: Matroids

26.4 The Minimum Weight Base Problem

Just as bases generalize the notion of spanning trees in a graph, there is also a natural generalization of the
minimum spanning tree problem, which, as we will see in this section, can be solved by a generalization of
Kruskal’s algorithm.

First, we define our problem:

Definition 4 Given a matroid M = (X, I), specified by an independence oracle, and a weight function w :
X → R (note that weights can be negative), the goal of the Minimum Weight Base Problem is to find a
base B ∈ I of M of minimum weight (where the weight of a base is the sum of the weights of its elements).

An algorithm for Minimum Weight Base is as follows:

Algorithm 1 Minimum Weight Base Algorithm

Input: A matroid M = (X, I), specified by an independence oracle, with item weights w(x) ∈ R, x ∈ X.
Output: A minimum weight base B of M .

B ← ∅
for each item x ∈ X in increasing order of weight w(x) do

if B ∪ {x} ∈ I then
B ← B ∪ {x}

end if
end for
return B

As mentioned above, this is easily recognizable as a generalization of Kruskal’s algorithm. We will now prove
its correctness, first by proving that the returned set B is a base at all – it is clearly an independent set, since
B is initially empty, and the algorithm always maintains the independent set property, but we need to prove it
is a base – and then by proving it is of minimum cost.

Lemma 2 The set B returned by Algorithm 1 is a base of M .

Proof. Suppose B is not a base. Then B ∪ {x} ∈ I for some x 6∈ B. Let B′ be the value of B when the
algorithm considered x. The algorithm never removes an item from B, so B′ ⊆ B, therefore B′∪{x} ⊆ B∪{x}.
We have B ∪{x} ∈ I, therefore B′ ∪{x} ∈ I. This implies that the algorithm would have added x to B′, so we
should have x ∈ B, a contradiction. So B is a base.

Lemma 3 The set B returned by Algorithm 1 is a minimum weight base of M .

Proof. Let B∗ be a minimum weight base. Order both B = {xi1 , . . . , xit} and B∗ = {xi∗1
, . . . , xi∗t

} (recall two
bases have the same size) in increasing order of weight. Let Bk = {xi1 , . . . , xik} and B∗k = {xi∗1

, . . . , xi∗k
} for

any 0 ≤ k ≤ t (where B0 = B∗0 = ∅).

If w(B) > w(B∗) then consider the least k with w(xik) > w(xi∗k
). Now, |Bk−1| < |B∗k | so there is some

x ∈ B∗k − Bk−1 with Bk−1 ∪ {x} ∈ I. Note w(x) ≤ w(xi∗k
) < w(xik), so x was considered by the algorithm

before xik . But then the algorithm should have added x to B, a contradiction. Therefore w(B) ≤ w(B∗).

