
-23

CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 21-23 (Oct. 26, 28, 31): The Ellipsoid Method
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

21.1 The Ellipsoid Method: An Overview

We discus the ellipsoid method. This was the first polynomial-time algorithm discovered for solving linear
programs.

At the heart of it is a routine solving the following problem: Given a convex body P and radius R that ensures
P is contained in the ball of radius R about 0, either find some point in P or determines the volume of P is
very tiny (at most ε times the unit ball volume). This can be solved in time that is polynomial in n, logR and
log 1

ε .

To apply this high-level idea and solve linear programs, we will (roughly speaking) do the following:

• Slightly relax the constraints by an ε′ > 0 (with polynomial bit complexity) on the right hand side that
ensures the following: a) if the polyhedron in question was non-empty, its volume is not significant enough
that the ellipsoid method is guaranteed to find a point b) if the polyhedron was empty then it remains
empty under the tiny bit of additional slack. This will use another application of Farkas’ lemma. Thus,
we can decide exactly if a polytope is empty or not.

• Finding a feasible primal and dual that are both optimal is a system of linear constraints (with the
objective function vectors being set equal to each other). We can iteratively use the “feasibility” checking
algorithm to turn some inequalities into equalities. This will allow us to find a basis of tight constraints,
from which we can extract an optimum solution.

21.2 Ellipsoids

We start with a quick review of positive definite and positive semidefinite matrices. We emphasize that every
time we discuss positive (semi)definiteness of a matrix that the matrix will be symmetric.

Definition 1 A symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for every x ∈ Rn we have
xT ·M · x ≥ 0. We use M � 0 to indicate M is psd. We further call M positive definite if xT ·M · x > 0
for all nonzero x ∈ Rn and use M � 0 to indicate M is positive definite.

Recall every symmetric matrix M ∈ Rn×n has precisely n real eigenvalues if you count them with appropriate
multiplicity: a) using their multiplicity as roots of the characteristic polynomial of M , or b) using the dimension
of their corresponding eigenspaces. The two notions of multiplicities agree for symmetric matrices over R.

Recall the following from standard linear algebra.

21-1

21-2 Lecture 21-23: The Ellipsoid Method

Theorem 1 The following are equivalent for a symmetric M ∈ Rn.

• M � 0

• All eigenvalues λi of M are nonnegative.

• We can write M = U · D · UT where U is a matrix whose columns are unit vectors and are pairwise-
orthogonal and D is a diagonal matrix (i.e. all off-diagonal entries are 0) with nonnegative diagonal
entries.

In the latter case, for each 1 ≤ i ≤ n we have Di,i is an eigenvalue for M and the i’th column of Ui is a
corresponding eigenvector. If M � 0 (equivalently, all eigenvalues are strictly positive) then M−1 = U·D−1 ·UT

where D−1 is simply obtained by inverting each diagonal entry of D. Finally, recall that the determinant of a
matrix is the product of its eigenvalues. This is especially easy to see with psd matrices:

det M = (det U) · (det UT) · (det D) = (det(U ·UT)) · (det D) = (det I) · (det D) =

n∏
i=1

λi.

Definition 2 Let M � 0 and x ∈ Rn. The ellipsoid centred around x with shape M is

E(M,x) = {z ∈ Rn : (z− x)T ·M−1 · (z− x) ≤ 1}.

Let’s get some intuition about this first. You might recall that an ellipse in the 2D-plane is the set of points
(x, y) satisfying

x2

r2
x

+
y2

r2
y

= 1

for some rx, ry > 0. This is obtained by considering the unit circle centred around the origin, and then stretching
it along the x-axis by rx and along the y-axis by ry. The area enclosed by this ellipse is then rx · ry · π (where
π is the area of the unit circle).

rx

ry

To obtain a rotated ellipse, specify two orthogonal unit vectors v1,v2 and corresponding stretch values r1, r2 > 0.
If we stretched the unit circle by r1 along v1 and by r2 along v2 then the set of points z = (x, y) lying on the

boundary of this stretched circle satisfy 〈z,v1〉2
r21

+ 〈z,v2〉2
r22

= 1.

Lecture 21-23: The Ellipsoid Method 21-3

v1
v2

In general, an n-dimensional ellipse can be given by an orthonormal basis v1,v2, . . . ,vn and values r1, r2, . . . , rn >

0: the ellipse is all points z satisfying
∑
i
〈z,vi〉2
r2i

= 1. Let Bn be the unit ball in Rn. The ellipsoid is just the

space enclosed by this ellipse and has volume
∏
i ri · vol(Bn) (i.e. scale the volume of the n-dimensional unit

ball by
∏
i ri). We can also centre it around any point x by a simple translation.

This aligns with the definition of E(M,x) above. Here, M is a positive definite matrix. An orthogonal basis of
unit-length eigenvectors (the columns of U) specifies the axis we will stretch the ball along to get the ellipsoid.
The eigenvalues (the entries of D) are the squares of the ri values we use to stretch the unit ball to get the
ellipsoid.

Note then that vol(E(M,x)) =
√

det M · vol(Bn).

21.3 Löwner-John Ellipsoids

At the heart of the Ellipsoid Method is a method that does the following. Suppose we have an ellipsoid E(M,x)
that we know contains a convex body P. Furthermore, suppose that x 6∈ P and that a ∈ Rn,a 6= 0 describes
a “separating hyperplane” in the sense that aT z ≥ aTx for all z ∈ P. Then we can find a smaller ellipsoid
E(M′,x′) that still contains P. The volume of this ellipsoid is small enough (compared to the volume of
E(M,x)) that iterating this procedure a polynomial number of times will yield an ellipsoid with exponentially
smaller volume. See Figure 21.1 for a depiction.

21-4 Lecture 21-23: The Ellipsoid Method

x x0
M

M0

{z : aT z = aT x}

Figure 21.1: Depiction of an ellipsoid E(M,x), a line through x, and an ellipsoid E(M′,x′) covering the half of
E(M,x) contained on one side of the line.

The ellipsoid E(M′,x′) we will use is the following. From this point on, we assume n ≥ 2; I think you are
capable of solving linear programs with only 1 variable!

Definition 3 (Löwner-John’s Ellipsoid) Suppose n ≥ 2. Let M � 0,x ∈ Rn and a ∈ Rn,a 6= 0. Let

b′ :=
1√

aTMa
·Ma.

From this, define M′,x′ as

M′ :=
n2

n2 − 1

(
M− 2

n+ 1
b′b′

T
)
,

x′ := x +
1

n+ 1
b′.

The ellipsoid E(M′,x′) is the Löwner-Johns ellipsoid (for E(M,x) and a).

Of course, there are some things to prove here. For starters, we have to be convinced that M′ is indeed positive
definite and that all properties discussed above hold. You might be concerned about the square root in the
calculation because we have to stay in the realm of rational numbers to implement this algorithm. It turns out
it suffices to compute it within some polynomial number of bits, as long as we slightly enlarge the ellipsoid. We
will briefly touch on these details later.

For the rest of this section, we fix some M � 0,x,a (with a 6= 0) and let b′,M′,x′ be as described in Definition
3. We first note aTMa > 0 as M � 0 and a 6= 0, so the construction of M′ and x′ is well-defined.

Lemma 1 M′ is symmetric and M′ � 0

Proof. For symmetry, simply note M is symmetric and b′b′T is also symmetric (the outer product of two
vectors is always symmetric), so M′ is also symmetric.

Lecture 21-23: The Ellipsoid Method 21-5

That M′ � 0 is maybe not immediately obvious as it is the difference between a positive definite matrix and a
positive semidefinite matrix. But consider

M′−1
=
n2 − 1

n2

(
M′−1

+
2

n− 1
· aaT

aTMa

)
.

One can verify this is indeed the inverse of M′ by explicitly calculating M′ ·M′−1
and seeing that you get I.

Note that M′−1
is the positive-weighted sum of a positive definite matrix M−1 and a positive semidefinite

matrix aaT (any outer product is positive semidefinite by a quick verification: zT (aaT)z = (zTa)2 ≥ 0). So

M′−1 � 0, meaning M′ � 0 as well (the eigenvalues of M′ are inverses of eigenvalues of M′−1
).

We now at least know E(M′,x′) is well-defined as an ellipsoid we now show one of the two the main results,
that it contains the half of the original ellipsoid we are interested in. The other main result is that it’s volume
has shrunk by a sufficient quantity.

Theorem 2 E(M′,x′) ⊇ E(M,x) ∩ {z ∈ Rn : aT z ≥ aTx}

Proof. Let z ∈ E(M,x) ∩ {z ∈ Rn : aT z ≥ aTx}. We show

(z− x′)TM′−1
(z− x′) ≤ 1

to determine membership in E(M′,x′). Expanding the left side and using the expression for M′−1
presented in

the proof of Lemma 1, we have

(z− x′)TM′−1
(z− x′)

=
n2 − 1

n2
·
(

z− x− 1

n+ 1
b′
)T (

M−1 +
2

n− 1
· aaT

aTMa

)(
z− x− 1

n+ 1
b′
)

=
n2 − 1

n2

(
(z− x)TM−1(z− x) +

2

n− 1
t2 +

1

n2 − 1
− 2

n− 1
t

)
where we set t = aT (z−x)√

aTMa
. The last equality is a straightforward (and slightly tedious) calculation. Now,

z ∈ E(M,x) means the last expression is bounded by

f(t) :=
n2 − 1

n2

(
1 +

2

n− 1
t2 +

1

n2 − 1
− 2

n− 1
t

)
.

Direct calculation verifies f(t) ≤ 1 for t ∈ [0, 1]. Namely, f(0) = f(1) = 1 and f(t) is a convex quadratic (i.e. it
“opens upward”) so f(t) ≤ max{f(0), f(1)} = 1 for every t ∈ [0, 1].

All that is left to show is t ∈ [0, 1] for the given value of t.

1. Recall z ∈ {z′ ∈ Rn : aT · z′ ≥ aT · x}, this immediately shows t ≥ 0.

2. Recall z ∈ E(M,x). This means

1 ≥ (z− x)TM−1(z− x) = (z− x− tb′)TM−1(z− x− tb′) + t2 ≥ t2.

The equality can be verified directly and the second inequality is because M−1 � 0.

That is, t ≥ 0 and t2 ≤ 1 so it must be 0 ≤ t ≤ 1.

The next theorem shows the volume of E(M′,x′) is smaller than E(M,x) by enough of a factor to ensure n
iterations of the ellipsoid method decreases the volume of the ellipsoid by a constant factor.

21-6 Lecture 21-23: The Ellipsoid Method

Theorem 3 det M′ ≤ e−1/(4n) · det M.

Proof. This is equivalent to bounding det(M−1M′) by e−n/4. Observe

det(M−1M′) =

(
n2

n2 − 1

)n
det

(
I− 2

n+ 1
·M−1b′b′

T
)

=

(
n2

n2 − 1

)n
det

(
I− 2

n+ 1
· 1

aTMa
· aaTM

)
.

Recall that the determinant of a matrix is the product of its eigenvalues. We claim the eigenvalues of I −
2

n+1 · 1
aTMa

· aaTM are 1 (with multiplicity n − 1) and 1 − 2
n+1 (with multiplicity 1). Note every vector is an

eigenvector of I with eigenvalue 1. So it suffices to show the eigenvalues of aaTM are 0 (with multiplicity n−1)
and aTMa (with multiplicity 1).

Note aaT is a rank-1 matrix, so then aaTM is as well. That is, the image of the linear map aaT is one-dimensional
as every vector v orthogonal to a has aaTv = 0, so the linear map aaTM also has a one-dimensional image1.
A rank 1 matrix always has 0 as an eigenvalue with multiplicity n − 1 (anything orthogonal to the first row,
thus any row, of the matrix is an eigenvector with eigenvalue 0). Finally, (aaTM)a = a(aTMa) so a is an
eigenvector with eigenvalue aTMa.

Therefore,

det(M−1M′) =

(
n2

n2 − 1

)n
·
(

1− 2

n+ 1

)
.

Now, using
(
1 + 1

x

)x ≤ e1 for all x ≥ 0 and
(
1− 1

x

)x ≤ e−1 for all x ≥ 1 we see

(
n2

n2 − 1

)n
·
(

1− 2

n+ 1

)
=

(
1 +

1

n2 − 1

)(n2−1)· n
n2−1

·
(

1− 2

n+ 1

)n+1
2 · 2

n+1

≤ e
n

n2−1 · e− 2
n+1

≤ e−
1
4n

The latter bound holds for n ≥ 3. For n = 2, one directly verifies
(

n2

n2−1

)n
·
(

1− 2
n+1

)
= 16

27 ≤ e−1/8.

21.4 The Ellipsoid Method

We describe the Ellipsoid method. Note we are not explicitly stating x ∈ Rn≥0, only that x ∈ Rn (but nonnega-
tivity constraints may be encoded in the system A ·x ≤ b). Here, Bn denotes the unit ball. The value R in the
input line of the algorithm describes a radius such that all feasible solutions are contained in a ball of radius R
around 0 (which gives our initial ellipsoid).

1It is at most one-dimensional but M is invertible so it is exactly one dimensiona.

Lecture 21-23: The Ellipsoid Method 21-7

Algorithm 1 The Ellipsoid Method

Input: System of constraints A · x ≤ b, bound R ≥ 0 such that P = {x ∈ Rn,A · x ≤ b} ⊆ E(R2 · I,x), value
ε > 0.
Output: A point x ∈ P or the statement vol(P) < ε·vol(Bn).

M← R2 · I
x← 0
κ← 8n ln Rn

ε .
for κ iterations do

if x ∈ P then
return x

else
let i be such that Ai · x > b.
let E(M′,x′) be the Löwner-John ellipsoid for M,x with separating plane given by a := −Ai.
(M,x)← (M′,x′)

end if
end for
return the statement vol(P) < ε · vol(Bn).

Recall we are letting Bn denote the unit ball in Rn.

Theorem 4 If Algorithm 1 does not find x ∈ P, then vol(P) < ε · vol(Bn).

We caution this does not necessarily mean the final ellipsoid is contained in a small unit ball. It could be
stretched very long and flat.

Proof. E(M,x) always contains P by Theorem 2.

Suppose Algorithm 1 does not return a point in P. The volume of the initial ellipsoid E(R2 ·I,0) is
√

det(R2 · I)·
vol(Bn). Theorem 3 and the fact the final ellipsoid E(M,x) contains P shows

vol(P) ≤
√

det M · vol(Bn) ≤
√
e−κ/4n · det(R2 · I) · vol(Bn) = e−κ/8n ·Rn · vol(Bn) = ε · vol(Bn).

Other Considerations
All details discussed below are fleshed out in the Korte-Vygen textbook (Chapter 4.4).

The calculation of x′ requires a square root. It turns out it is sufficient to compute it up to a polynomial

number of bits after the decimal place. This does require us to slightly enlargen the coefficient n2

n2−1 in front of
the definition of M′ to ensure this truncated representation of x′ still contains the space we want. A very mild
increase ensures this and still guarantees geometric decrease in the volume every n steps.

Also, while the number of iterations is bounded by a polynomial in the bit complexity of the input, we still do
not know for sure that the values themselves representing M and x will stay bounded throughout the algorithm.
This is indeed the case, the Korte-Vygen textbook shows that they have polynomial bit complexity.

These are the only details we did not provide that allow us to see how to run the ellipsoid method in polynomial
time.

21-8 Lecture 21-23: The Ellipsoid Method

21.5 Feasibility Testing

Here we show how to determine whether P = ∅ or not. The algorithm correctly decides whether or not P = ∅,
but in the case P 6= ∅ it finds a solution x that is only guaranteed to be “very close” to being feasible (i.e. it
might violate constraints by a tiny amount). Later we will fix this problem.

We assume every entry of A and b is an integer. We also assume that if nonnegativity is desired, it is encoded
in the constraints. This is without loss of generality (up to a factor of n in the input size), as discussed in an
earlier lecture and we can simply add the constraint −xi ≤ 0.

Let P = {x ∈ Rn : A · x ≤ b}. Let Γ = 2 · nn/2 · 2n∆ where 2∆ is an upper bound on the absolute value of
any entry of A,b (so ∆ is the maximum bit complexity of an input value). By earlier bounds (via Hadamard’s
bound) each extreme point of P has each component being at most Γ/2.

Consider some ε′ > 0 (to be determined momentarily). Let

Qε′ = {x ∈ Rn : A · x ≤ b + ε′ · 1} ∩ {x ∈ Rn : −Γ · 1 ≤ x ≤ Γ · 1}

where 1 is the all-1 vector.

Finally, let Γ′ = (m+ 1)(m+1)/2 · 2(m+1)·∆.

Lemma 2 If P 6= ∅, then vol(Qε′) ≥
(
ε′

nΓ

)n
· vol(Bn). If P = ∅, then Qε′ = ∅ for ε′ ≤ 1

2mΓ′ .

Proof. Suppose P 6= ∅ and let x ∈ P. Let y ∈ Rn be such that maxi |yi − xi| ≤ ε′

nΓ . Then for any constraint
Ai,bi we have

Ai · y = Ai · x−Ai · (x− y) ≤ bi + Γ
∑
i

ε′

nΓ
≤ bi + ε′.

Also, −Γ ≤ yi ≤ Γ for each i because 0 ≤ xi ≤ Γ/2. Note that the square with side lengths ` contains a ball

with radius `. So vol(Qε′) ≥
(
ε′

nΓ

)n
· vol(Bn).

On the other hand, suppose P = ∅. By Farkas’ Lemma there is some y ∈ Rm≥0 such that AT · y ≥ 0 and

bT · y = −1. We may take y to be an extreme point of {z ∈ Rm≥0 : AT · z = 0,bT · z = −1.}. Then 0 ≤ yi ≤ Γ′

for each 1 ≤ i ≤ m.

Using this y, we then see (b + ε′ · 1)y = −1 + ε′
∑
i yi ≤ −1 + ε′ ·mΓ ≤ − 1

2 . A quick inspection of our earlier
proof of Farkas’ lemma shows this still certifies Qε′ = ∅.
The volume of Qε′ can be seen to be even larger in the case P 6= ∅ with a more careful analysis, but this will
suffice.

Now we just invoke the ellipsoid method to test if Qε′ has a small volume or not. Use ε′ = 1
2mΓ′ and invoke it

with the target volume parameter ε being

ε =

(
ε′

nΓ

)n
.

Let the bounding radius R be nΓ: this contains the cube centred at 0 with side lengths 2Γ, which contains all
points in Qε′ . As the bit complexity of ε′, ε is polynomial in the input size, this takes polynomial time.

Lecture 21-23: The Ellipsoid Method 21-9

21.6 From Feasibility to Optimization

We now know how to decide if a given collection of linear constraints admits a feasible solution. Unfortunately
the way we applied the ellipsoid method to solving this problem may produce a solution that slightly violates
constraints. However, it still correctly decides emptiness of P.

We first run the check on P itself to see if there is any solution. The exercise has you decide how to decide if
the linear program is unbounded. So we now assume the primal has an optimal solution. By strong duality,
this means the dual has an optimal solution as well and that the respective optimal solutions have equal value.

That is, Q = {x ∈ Rn≥0,y ∈ Rm≥0 : A ·x ≤ b,AT ·y ≥ c, cT ·x = bT ·y} has a feasible solution and any feasible
solution corresponds to both an optimal primal and dual solution.

To actually find an optimal solution, try replacing inequality constraints in Q with equality constraints one at
a time. If such a replacement yields a nonempty set, keep it. Otherwise revert it to the inequality constraint.

For any extreme point optimum x,y of the primal and dual, respectively, we see a full-rank subsystem of tight
constraints in the primal and dual. So when we have reached a point when no more primal or dual constraints
can be converted to equality constraints, we know we have full-rank subsystems of tight constraints so simply
solving the corresponding system of linear equations (which can be done in polynomial time using Gaussian
elimination with a careful choice of steps, see the textbook) yields the optimal primal and dual solutions.

21.7 Separation Oracles

In the Ellipsoid method, it suffices to generate any violated constraint. Of course, we can search through the
constraints to find one. But this gives us more flexibility: we can perhaps have exponentially many constraints
not explicitly listed and simply have an algorithm that produces a violated constraint for a proposed point x
or determine x ∈ P.

So, can one optimize when we are given this “oracle” access to exponentially many constraints? Yes, but the
approach has to be slightly revised. For example, we can’t go through the process of guessing tight constraints
as with Q in the previous section.

The approach will be touched on next lecture.

