
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 2 (September 9): Network Flow
Lecturer: Zachary Friggstad Scribe: Bradley Hauer

2.1 Network Flow

This lecture introduces the concept of a flow network. At the most basic level, a flow network can be viewed
as an edge-weighted directed graph with all weights being non-negative real numbers. Further, distinct vertices
s, t are designated the source and sink. This definition will lead to some interesting problems, which will in turn
lead us to some new theorems and algorithms.

Preliminary notation. For a directed graph G = (V,E) we let

• For any U ⊆ V , δout(U) = {uv ∈ E : u ∈ U, v 6∈ U} is the set of edges leaving U .

• For any U ⊆ V , δin(U) = {uv ∈ E : u 6∈ U, v ∈ U} is the set of edges entering U .

• For any v ∈ V , δout(v) := δout({v}) and δin(v) := δin({v}).

• For any g : E → R≥0 and any S ⊆ E, g(S) =
∑

e∈S g(e).

Definition 1 Let G = (V,E) be a directed graph, µ : E → R≥0 be a capacity function on the edges, and
s, t ∈ V , s 6= t. A flow is a mapping f : E → R≥0 which satisfies both of the following:

1. f(δin(v)) = f(δout(v)) ∀v ∈ V − {s, t}.

2. f(e) ≤ µ(e) ∀e ∈ E

Intuitively, flow networks model problems where we need to transport some divisible quantity from a starting
point, through multiple connected junctions or nodes, to an ending point. For example, we might need to route
water from a water source, perhaps a river, to a destination, perhaps a water treatment plant. A pipe system is
in place connecting the source to the destination, and there are junctions between the pipes where the flow can
be controlled and routed. However, each section of pipe has a set capacity, an upper limit on how much water
can flow through it. A flow, then, is a way of routing water from the source, to the destination.

Condition 1, flow conservation, can be informally stated as “flow in equals flow out”. Whatever we are trans-
porting, if it leaves the source, it must reach the target, and a node cannot send out more of something than it
takes in (only the source can “produce” anything).

Condition 2 simply ensures that the capacities on each edge are respected. Going back to the water example, a
pipe has a fixed width, and so can only carry a certain quantity of water.

Definition 2 The value of a flow f , denoted val(f), is f(δout(s))− f(δin(s)).

If no edges enter s, as is often the case, this can be simplified to f(δout(s)).

In words, the value of a flow the amount of flow that is created at the source s. Note that by condition 1 in the
definition of a flow, this is also the quantity that is lost at the sink t. In the water piping example, this is the
amount of water which reaches the water treatment plant from the water source.
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Figure 2.1: An s − t cut U . The thick edges form δout(U) and their total capacity is the capacity of the cut.
The dashed edges form δin(U) and do not contribute to the cut’s capacity.

2.2 Flows and Cuts

There is another useful concept which arises in the study of flow networks.

Definition 3 An s− t cut is a set U ⊆ V with s ∈ U , t 6∈ U . The capacity of an s− t cut U is µ(δout(U)).

If we think of the vertices in a flow as being points on the plane, a cut is simply the set of vertices in a circle
(or any other shape) containing s but not t (e.g. Figure 2.1). The capacity of a cut U is the total capacity of
the edges which exit U .

Lemma 1 Let f be a flow and U an s− t cut. Then val(f) ≤ µ(δout(U)).

Proof.

val(f) = f(δout(s))− f(δin(s)) By definition.

=
∑
v∈U

f(δout(v))− f(δin(v)) By flow conservation and t 6∈ U

= f(δout(U))− f(δin(U))
The sum counts the flow of each edge across U in each
direction exactly once; edges with both endpoints in
U “cancel out”.

≤ µ(δout(U))− 0 By condition 2, and because flow is non-negative.

So, every cut’s capacity provides an upper bound on the value of every flow. The rest of this lecture proves the
following and describes an algorithm for finding a maximum-flow and minimum-cut.

Theorem 1 (Max-Flow/Min-Cut Theorem) Let f be a maximum-value flow and U a minimum-capacity
s− t cut. Then val(f) = µ(δout(U)).

Another important lesson concerns integrality of flows.

Theorem 2 If all capacities are integers, then there is a maximum flow f with f(e) ∈ Z≥0 for each e ∈ E.
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Figure 2.2: Left: a flow f and an augmenting path depicted in bold. The path traversed the dashed edge in the
opposite direction, which corresponds to an edge in the residual graph because there is flow across this edge.
Right: the resulting flow f ′ obtained after augmenting along the path as described above. Note, the capacity
of the cut U consisting of the three leftmost nodes is equal to the value of f ′, so f ′ must be a maximum flow.

2.3 Residual Graphs and Augmenting Paths

Let ER = {vu : uv ∈ E} be the edges we would get by reversing edges in E. This should be taken to be disjoint
from E. For e ∈ E let ←−e be the reverse of e in ER and for e ∈ ER let ←−e denote the original edge in E whose

reverse is e. So if e ∈ ER and we let f =←−e then e =
←−
f .

Definition 4 Let f be a flow. Let Gf = (V,Ef ) be the residual graph (with respect to f) where Ef = {e ∈
E : f(e) < µ(e)}∪̇{e ∈ ER : f(←−e ) > 0}. Let µf : Ef → F≥0 be a residual capacity function defined as
follows for e ∈ Ef ,

µf (e) =

{
µ(e)− f(e) if e ∈ E
f(←−e ) if e ∈ ER.

Note that µf (e) > 0 for every e ∈ Ef .

Call an s − t path P in Gf an augmenting path. We will use such a path to “increase the flow” from s to t
as follows.

Set

α = min
e∈P

µf (e) > 0.

Let f ′ be defined as follows for e ∈ E,

f ′(e) =


f(e) + α if e ∈ E
f(e)− α if ←−e ∈ P
f(e) otherwise.

The process is depicted in Figure 2.2.

The following lemma explains why we do this:

Lemma 2 With f , f ′, and α as described above, f ′ is a flow and val(f ′) = val(f) + α. Furthermore, if f is
integral and all capacities are integral, then f ′ is also integral.
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Proof. By our choice of α, we have 0 ≤ f ′(e) ≤ µ(e) for every edge e: If e ∈ P , then f(e) < µ(e) by the
definition of µf , and by how α was chosen,

f(e) + α ≤ f(e) + µf (e) = f(e) + µ(e)− f(e) = µ(e).

Similarly, if the residual edge of e is in P , then the flow along ←−e is at least α so

f(e)− α ≥ f(e)− µf (←−e ) = f(e)− f(e) = 0.

Further, f ′ is flow-conserving: for each vertex v 6= s, t which P visits let e = uv, e′ = vw ∈ Ef denote the edges
of P incident to v.

• If e, e′ ∈ E or e, e′ ∈ ER then f(δin(v)) and f(δout(v)) either both increase or both decrease by α.

• If e ∈ E and e′ ∈ ER then f ′(e) = f(e) + α and f ′(e′) = f(e′) − α. As both e, e′ enter v, the net flow
through v does not change.

• Similarly, if e ∈ ER and e′ ∈ E then f ′(e) = f(e)− α and f ′(e′) = f(e′) + α. As both e, e′ exit v, the net
flow through v does not change.

Applying the same reasoning to s, let e = sv be the edge that exits s on P . If e ∈ E then f ′(e) = f(e) + α
where e ∈ δout(s). If e ∈ ER then f ′(←−e ) = f(←−e )−α where e ∈ δin(s). In either case, f ′(δout(s))− f ′(δin(s)) =
f(δout(s))− f(δin(s)) + α. so, by definition, val(f ′) = val(f) + α.

Summarizing, f ′ is a nonnegative flow that obeys the capacities and sends α more flow than f . The observation
about integrality of f ′ follows because the residual capacities µf are integers (given the assumptions), so α is
then integral.

Since α is positive by definition, then finding an s − t path in a flow’s residual graph allows us to efficiently
construct a flow with strictly higher value. Algorithm 1 uses this process to find a maximum value flow.

Algorithm 1 The Ford-Fulkerson Maximum Flow Algorithm

Input: A flow network G = (V,E) with capacity function µ
Output: A maximum-value flow f

f(e)← 0 ∀e ∈ E
while there exists an s− t path P in Gf do

augment f along P (as described above) to get a flow f ′ with larger value
f ← f ′

end while
return f

The following, in conjunction with Lemma 1, proves Theorem 1.

Theorem 3 Let f be the flow returned by Algorithm 1 and let U ⊆ V be the nodes reachable from s in Gf .
Then val(f) = µ(δout(U)). Furthermore, if all capacities are integers then f(e) ∈ Z≥0.

Proof.

val(f) = f(δout(U))− f(δin(U)) Because U is an s− t cut.
= µ(δout(U))− µ(δin(U)) No e ∈ δout(U) has f(e) < µ(e); if some e did, we would have e ∈ Ef .
= µ(δout(U)) f(e) = 0 for e ∈ δin(U), otherwise we would have ←−e ∈ Ef .
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The statement about f being integral is simply by induction on the number of iterations, given the last statement
of Lemma 2.

Important note: This is not a polynomial-time algorithm! Depending on the paths found, the number of
iterations may be exponential in the size of the input. Consider Figure 2.3 where N is a positive integer.
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For 1 ≤ i ≤ 2N let the i’th iteration of Algorithm 1 choose augmenting path 〈s, u, v, t〉 if i is odd or 〈s, v, u, t〉
if i is even.

The middle edge traversed by the augmenting path always has residual capacity 1 meaning each iteration
increases the flow by 1. Overall algorithm runs for 2N iterations. But the number of bits used to write N is
∼ log2N so the algorithm takes exponential time.

In fact, the exercises in the Korte-Vygen textbook give an example where if the capacities are irrational then
the Ford-Fulkerson algorithm may never terminate.


