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17.1 Certificates of Optimality

Consider the linear program
maximize : cT · x
subject to : A · x ≤ b

x ≥ 0

with

A =

(
4 5 1
1 8 1

)
, b =

(
3
4

)
, and c =

 3
5
1

 .

Consider the following feasible solution with value cTx = 3

x =

 0
1/3
4/3

 .

I claim that x is an optimal solution, but how can I convince you easily?

Here is how to construct upper bounds. The first one constructs a somewhat weak upper bound, but then we
discuss how to automate the process to find better upper bounds.

Consider the row vector z = 1
2A1 + A2 = (3, 10 1

2 , 1
1
2 ). Note z ≥ c. Therefore, for any feasible x′ we have

cTx′ ≤ zx′ =
1

2
A1x

′ + A2x
′ ≤ 1

2
b1 + b2 = 5

1

2
.

So the optimum value of this LP is somewhere between 3 and 5 1
2 .

Can we come up with a better bound this way? The key parts are that we formed z as a nonnegative linear
combination of the rows of A and that z ≥ c. These are linear constraints, and the goal is to minimize the
corresponding linear combination of b to get the best possible upper bound. More precisely, let y denote a
vector over Rm of variables. Thinking of these as the nonnegative coefficients in the linear combination of the
rows of A we arrive at the following dual linear program.

minimize : bT · y
subject to : AT · x ≥ c

y ≥ 0

Theorem 1 (Weak Duality) Let A ∈ Rm×n,b ∈ Rm, c ∈ Rn. Let P = {x ∈ Rn : A · x ≤ b} be the primal
polyhedron and D = {y ∈ Rm : AT · y ≥ c} be the dual polyhedron.
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If P 6= ∅ and D 6= ∅ then
max
x∈P

cT · x ≤ min
y∈D

bT · y.

Proof. Let x ∈ P,y ∈ D. Then

cT · x ≤ (AT · y)T · x = yT ·A · x ≤ yT · b.

The first inequality holds because x ≥ 0 and AT · y ≥ c. The second inequality holds because y ≥ 0 and
A · x ≤ b.

Next lecture, we will see something stronger. That the primal has a finite optimum if and only if the dual has
a finite optimum1. Furthermore, in this case the optimum solutions to the respective linear programs have the
same objective function value (i.e. the weak duality bound above holds with equality if you consider optimal
solutions).

In the example above, simply taking y = (1, 0)T yields a feasible dual solution with value 3, so we now know
the optimum primal (and dual) value for the example is in fact 3.

17.2 Duals of Arbitrary LPs

We talked about how to construct the dual of an LP in standard form. We also have rules for converting an
arbitrary LP into an LP in standard form. So every LP has a dual (not just those in standard form), but it
would be nice to compute the dual without going through the entire conversion to standard form.

In the following discussion, we call a variable xi unconstrained in a given LP if xi ≥ 0 is not a constraint.
We also assume, by negating if necessary, that all inequality constraints in a minimization LP are of the form
Ai · x ≥ bi and all inequality constraints of a maximization LP are of the form Ai · x ≤ bi.

This table presents the information as if the primal was the minimization LP. If the primal is a maximization
LP, just swap the columns.

Primal ↔ Dual
min ↔ max

variables ↔ constraints
constraints ↔ variables

xj ≥ 0 ↔ AT
j · y ≤ cj

xj unconstrained ↔ AT
j · y = cj

Ai · x ≥ bi ↔ yi ≥ 0
Ai · y = bi ↔ yi unconstrained

For example, consider the following primal LP (left) and its corresponding dual LP (right).

minimize : 2x2
subject to : x1 + 2x2 ≥ 3

3x1 + 4x2 ≤ 8
5x1 + 6x2 = 10

x1 ≥ 0

Note x2 is unconstrained.

1For a feasible minimization LP, we say it is unbounded if one can find solutions of arbitrarily low cost and, otherwise, we say
it has a finite optimum.



Lecture 17: LP Duality 17-3

To apply the above conversion, we negate any ≤ constraint so all constraints are of the form ≥ or = (in a
maximization LP, we would negate some constraints to ensure they are all of the form ≤ or =). This produces
the equivalent LP

minimize : 2x2
subject to : x1 + 2x2 ≥ 3

−3x1 − 4x2 ≥ −8
5x1 + 6x2 = 10

x1 ≥ 0

There are 3 constraints (apart from nonnegativity), so we use three dual variables y1, y2, y3. The dual LP is
then

maximize : 3y1 − 8y2 + 10y3
subject to : y1 + 3y2 + 5y3 ≤ 0

2y1 + 4y2 + 6y3 = 2
y1, y2 ≥ 0

Note y3 is unconstrained.

So the basic idea is the same as for a primal LP in standard form. The dual uses the transposed constraint
matrix and the role of b and c swap. The particulars of which constraints are inequalities an which are equalities,
as well as which variables are bound to be nonnegative and which are unconstrained, can be read off from the
table above.

It is straightforward to show weak duality holds in this case.

17.3 A Separation Theorem for Convex Bodies

There are two commonly-followed approaches to proving strong duality (i.e. primal optimum = dual optimum if
they are both feasible). One is seen as a consequence of why the simplex algorithm terminates. This would take
too much effort to build up in this class, as the only LP solver we will see uses the ellipsoid method. Another
is a surprisingly quick application of a general-purpose theorem about convex bodies. We now do this. In fact,
the bulk of the effort will be in low-level details about basic topology in Rn.

Definition 1 A subset P ⊆ Rn is convex if for any x,y ∈ P and any 0 ≤ λ ≤ 1 we have λ ·x+(1−λ) ·y ∈ P.

In other words, the line segment between any two points of P is completely contained in P. The current
assignment has you show that the set of feasible solutions to every linear program is convex.

We briefly need one standard definition from topology. Don’t worry if you are not familiar with this field, this
is only a very brief use of it and we will not use it again after proving strong duality.

Definition 2 A subset P ⊆ Rn is closed if for any x 6∈ P there is some δ > 0 such that {y : ||x − y||2 ≤
δ} ∩ P = ∅.

That is, if x 6∈ P then it is contained in some positive-radius ball that lies outside of P.

We invoke the following classic result.

Theorem 2 Suppose P ⊆ R is closed and bounded (i.e. there is some ∆ ≥ 0 such that P is contained in some
cube with side length ∆). Then for every sequence x1,x2,x3, . . . of points in P there is some infinite subsequence
xi1 ,xi2 , . . . with i1 < i2 < . . . that converges to a point x∗ ∈ P.
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P

x

Figure 17.1: A hyperplane separating x from P. All points y “above” the line satisfy aT · y ≥ v.

Sets P that are closed and bounded are sometimes called compact. We did not discuss issues like this explicitly
in the lecture, we simply stated that step 1 in the proof of Theorem 4 below follows from the assumption that
P is closed.

However, for those that are curious to see the entire proof of strong duality from start to finish, the full proof
is included the Appendix A. Feel free to skip it if you want to just take it for granted.

With this machinery at hand, we now prove the following fundamental result from convex geometry.

Theorem 3 (Separation Theorem) Let P ⊆ R be a closed and convex set. If x 6∈ P then there is some
a ∈ Rn,a 6= 0 and v ∈ R such that aT · x < v and aT · y ≥ v for all y ∈ P.

See Figure 17.1

Proof.

We assume P 6= ∅, otherwise it is trivial: pick any a 6= 0 and set v = aT · x− 1.

Step 1: find a point y∗ ∈ P closest to x

Let α = infy∈P ||x − y||22. This is well-defined as P 6= ∅ (so there is at least one point) and all distances are
nonnegative.

By definition, there is a sequence of points y1,y2, . . . in P such that the values ||x − yi||22 approach α from
above. From Theorem 3, we may also assume that the points y1,y2, . . . themselves are converging to a point
y∗ ∈ P (by restricting to a subsequence if necessary).

Because ||x− y||22 is a continuous function, ||x− y∗||22 = α. So y∗ is a closest point of P to x. Also note α > 0
because x 6∈ P.

Step 2: construct the vector a and value v

Simply put, let a = y∗ − x and v = aT · y∗. Note

aT · x = aT · (y∗ + x− y∗) = aT · y∗ − aT · (y∗ − x) = v − ||x− y∗||22 = v − α < v.

Step 3: showing aT · P ≥ v
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Figure 17.2: The solid line represents the halfspace delimited by a, v. The point p(λ∗) on the line between y∗

and z. It is the point on this line that is closest to x and it is in P by convexity.

Suppose, for the sake of contradiction, there is some z ∈ P such that aT · z < v. Let p(λ) = λz + (1− λ)y∗ be
a parameterization of the line passing through y∗, z. Let λ∗ be such that (p(λ∗)− x)T · (z− y) = 0.

More precisely, let

λ∗ =
(x− y∗)T (z− y∗)
||z− y||22

=
aT · (y∗ − z)

||z− y||22
.

One can check that p(λ∗) is the closest point to x among all points of the form p(λ) by seeing that the derivative
of the quadratic function f(λ) = ||p(λ)− x||22 vanishes at λ∗.

Note λ∗ > 0 as aT · y∗ = v > aT · z. If λ∗ ≥ 1, then we have ||p(1) − x||22 < ||p(0) − x||2x as the quadratic
||p(λ)−x||22 is strictly decreasing in the interval [−∞, λ∗]. That is, z would be closer to x than y∗ contradicting
our choice of y∗.

So 0 < λ < 1. But then p(λ∗) is itself a point in P (by convexity) and would then be strictly closer to x than
y∗. See Figure 17.2 for an illustration of this step.

Therefore for each z ∈ P we have aT · z ≥ v.

A Proof of Theorem 3

Proof. Suppose otherwise. Then for every y ∈ P there is some δy > 0 such that the open ball B(y; δy) = {y′ ∈
Rn : ||y − y′|| < δy} contains only finitely many terms from the sequence x1,x2, . . . .

As y ∈ B(y; δy) for each y ∈ P, we have P ⊆ ∪y∈PB(y; δy). We say{B(y; δy)}y∈P is an open cover of P.

Claim: There is a finite subset Q ⊆ P such that P ⊆ ∪y∈QB(y; δy).

That is, the open cover has a finite subcover. If this claim is true, we see a contradiction in that each ball
B(y; δy) contains only finitely many terms of the sequence yet this finite subcover is claimed to contain all
points in P.

To prove the claim, we suppose otherwise and arrive at a contradiction.

For z ∈ Rn and κ ≥ 0 let
C(z, κ) = {y ∈ Rn : |yi − zi| ≤ κ, ∀1 ≤ i ≤ n}

be the cube with centre z with side lengths 2κ. So P ⊆ C(0,∆) by the assumption that P is bounded. We
construct a sequence of cubes C0 = C(0,∆), C1, C2, . . . where the side length of Ci is ∆/2i inductively as follows.
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We know, by assumpion, C0 ∩ P = P cannot be covered by a finite subsequence of balls B(y, δy) in the open
cover. Inductively, we have that Ci ∩P cannot be covered by a finite subset of balls B(y; δy) of points. Cut Ci

into 2n cubes with side length ∆/2i+1 by cutting Ci through the middle along each axis. At least one of these
2n cubes cannot have all points in common with P being covered by a finite subset of balls B(y; δy). Call this
cube Ci+1.

This sequence of cubes C0, C1, . . . satisfies Ci ⊆ Ci−1 and the side length decreases by a factor of 2 in each step,
so they converge around a point y∗. in all Ci.

• If y∗ 6∈ P, then some positive-radius ball B around y∗ is disjoint from P (as P is closed). But Ci ⊆ B for
large enough i, contradicting the fact that Ci ∩ P = ∅ cannot be covered by a finite set of balls B(y; δy).

• If y∗ ∈ P, then for large enough i we have that Ci ⊆ B(y; δy) which contradicts the fact that Ci ∩ P
cannot be covered by a finite set of balls.


