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In this lecture we continue the discussion about the linear programming. First we will provide a useful lemma,
then we will examine the bit complexity of extreme point solutions. Finally we will explore totally unimodular
(TUM) matrices and show that if constraint matrix A is TUM and b ∈ Zm, our LP has integer extreme points.

15.1 Calculation of extreme point values

First of all we have a definition.

Definition 1 Let the ith column of M ∈ Rm×n be denoted by mi. Then for each column vector b ∈ Rm, we
denote the matrix obtained by replacing the ith column of M with b by M(i; b).

For example, if

M =

 1 2 3
4 5 6
7 8 9

 , b =

 10
11
12


then

M(2; b) =

 1 10 3
4 11 6
7 12 9

 .

Recall our standard notation when deadline with LPs. Let x ∈ P = {x ∈ R≥0, Ax ≤ b} be a feasible solution
to our linear program, and also Ax and bx be the matrix and rhs-vector of tight constraints for x respectively
(so Axx = bx). From the previous lecture we know that x is an extreme point if and only if rank(Ax) = n.

We consider some extreme point x. Let A′ be any n × n submatrix of Ax with rank(A′) = n (there will
be at least one, from basic linear algebra results). Let b′ be the corresponding entries of bx. Recall that
rank(A′) = n⇐⇒ detA′ 6= 0. So

Lemma 1 For each 1 ≤ i ≤ n,

xi =
detA′(i; b′)

detA′
.

This is exactly Cramer’s rule from linear algebra. We call such a full-rank matrix A′ and vector b′ a basis
representation for the tight constraints.
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15.2 Bit complexity of extreme points

In this section we will show that the bit complexity of representing any extreme point of LP (if it is not infeasible
or unbounded) is polynomial to the size of input.

First of all we know that the number of bits required to write an integer k (without considering the low level
details) is dlog k + 1e ∈ O(log k). Also the number of bits required to write a fraction a

b ∈ Q is O(lg a+ lg b).

Assuming, without loss of generality, all values are integers
Another important fact is that we can assume that A and b only have integer entries. This is by clearing the
denominators in each row. Let ∆ denote the maximum bit complexity of the denominators appearing among
all entries of A, b, c (so each denominator is at most 2∆).

Let `i be the product of all denominators of row Ai and entry bi. Then constraint Mix ≤ bi is equivalent to
(`i ·Mi)x ≤ `i · bi. As all entries in this constraint are scaled by at most 2∆, the total bit complexity in this row
increases by (n+ 1) ·∆ which is polynomial in the input size. We can clear the objective function denominators
in the same way, which preserves optimality of solutions and only scales their value by the scalar used to clear
denominators. Thus, we assume all given coefficients are integers.

We now proceed to bound the bit complexity of extreme point solutions.

Definition 2 Let Sn denote the set of all permutations σ : [n] → [n] of [n] = {1, 2, . . . , n}. For each σ ∈ Sn,
we let

sgn(σ) = (−1)|{i<j:σ(i)>σ(j)}|.

Another view is that sgn(σ) is 1 if the number of odd-length cycles in the cycle decomposition of σ is even, and
is -1 if the number of odd-length cycles in the cycle decomposition of σ is odd.

The Leibniz formula for the determinant of an n× n matrix A is:

detA =
∑
σ

sgn(σ)

n∏
i=1

Ai,σ(i). (15.1)

This expresses the determinant as an integer-linear combination of some products of its entries. So we immedi-
ately

Lemma 2 If A ∈ Zn×n then detA ∈ Z.

On the other hand, recall Hadamard’s bound for determinants:

∀A ∈ Rn×n, |detA| ≤
n∏
i=1

||Ai||2 =

n∏
i=1

(√√√√ n∑
j=1

(Aij)2

)
(15.2)

Now let ∆ be the smallest number such that every entry of A and b lies in the range[−2∆, 2∆]. Then by Cramer’s
rule and Hadamard’s bound, we have

Lemma 3 Let A′, b′ be a basis representation for the tight constraints of an extreme point x. Then both the
numerator and denominator of xi are bounded, in absolute value, by abc.

Proof. On one hand, detA′ is an integer. On the other hand,

detA′ ≤
∏
i

√∑
j

A2
i,j ≤

∏
i

√
n22∆ = nn/22n∆.
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Thus, the number of bits required to write the denominator of any xi is log detA′ = O(n∆ log n). A similar
argument applied to detA′(i; b) will also bound the numerator’s bit complexity by O(n∆ log n).

15.3 Totally Unimodular Matrix

Definition 3 A matrix A ∈ Rm×n is totally unimodular (TUM) if for every square submatrix A′ ∈ Rk×k:

detA′ ∈ {−1, 0,+1} (15.3)

By considering the 1× 1 submatrices we see a TUM matrix can only have entries −1, 0 or +1.

Theorem 1 If A ∈ Rm×n is TUM and b ∈ Zm, then every extreme point x of P = {x ∈ Rn≥0;Ax ≤ b} is in
Zn.

Proof of Theorem 1. First we will show that if A ∈ Rm×n is TUM , then
(
A
In

)
∈ R(m+n)×n (which is

obtained by adding rows of the identity matrix to A) is TUM too.

Let A′ ∈ Zk×k be a square submatrix of
(
A
In

)
we will prove that detA′ ∈ {−1, 0,+1} by induction on the

number of rows from In in A′ which we denote by α(A′).

For the base step we should set α(A′) = 0. In this case A′ is a square submatrix of A which is TUM and so:
detA′ ∈ {−1, 0,+1}.

Inductively, suppose row i of In is a row of A′. If the row in A′ is all zeros (A′ does not contain ith column of(
A
In

)
), then the determinant would be zero. Otherwise say row i′ in A′ is from row i of InDenote the matrix

obtained by removing row i′ and column i from A′ by A′[i
′,j]. Then

detA′ =
∑
j

(
(−1)(i′+j).

(
detA′[i

′,j]
)
×Ai′j

)
= (−1)(i′+i).

(
detA′[i

′,i]
)

(15.4)

Since A′[i
′,j] is an square submatrix of

(
A
In

)
which has α(A′)− 1 rows from In, by induction its determinant is

in {−1, 0,+1}:

detA′[i
′,j] ∈ {−1, 0,+1} ⇒ detA′ ∈ {−1, 0,+1} (15.5)

Now suppose A′, b′ basis representation for the tight constraints of extreme point x ∈ P. Because A′ is a square

submatrix of TUM matrix
(
A
In

)
and has rank n, we have detA′ = ±1. Also, A′(i; b) ∈ Zn×n because A′ is

TUM (so all entries are integers) and b ∈ Zm. So by Cramer’s rule, we see

xi = ±detA′(i; b) ∈ Z.

That is, x ∈ Zn.

This also (essentially) shows the decision problem of determining if an LP has a solution with value at least
some given value v lies in NP1.

1For bounded LPs we just use an optimum extreme point as a ”yes” certificate in the case the LP value is at least v. For
unbounded LPs, we need to work just a tiny bit harder: add cT x ≥ v to the constraints and produce any extreme point.
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In the next lecture we will see some problems whose natural LP relaxations have a TUM matrix like the bipartite
matching problem.


