CMPUT 675: Topics in Combinatorics and Optimization

Fall 2016

Lecture 12 (Oct 3): Maximum Matchings in General Graphs

Lecturer: Zachary Friggstad

Scribe: Zachary Friggstad

12.1 Alternating Paths Proof

We begin by completing the proof of the following theorem. See the previous lecture for notation.

Recall that $\nu(G)$ denotes the size of a maximum matching in G.

Theorem 1 Let M be a matching, $B = (V_B; E_B)$ an M-blossom with base v_k and stem v_1, \ldots, v_k consisting of the edge set P. Then $\nu(G) = |M|$ iff $\nu(G/V_B) = |M| - \frac{|V_B| - 1}{2} = |M - E_B|$

Proof.[second half]

Suppose, now, that M is not a maximum matching in \mathcal{G} . The set $N := (M - P) \cup (P - M)$ is also a matching in \mathcal{G} with |M| = |N| that leaves the base of blossom \mathcal{B} exposed. Let $N' = N - E_B$ and note that N' is also a matching in \mathcal{G}/V_B (the graph obtained by contracting the blossom).

Because N is not a maximum matching, there is an N-alternating path Q in \mathcal{G} . We show in two cases that we can construct an N'-alternating path in \mathcal{G}/V_B .

• Case: Q shares no nodes with V_b . Then Q is also an N'-alternating path in \mathcal{G}/V_B .

• Case: Q shares a node with V_b . Write the nodes of Q as v_1, v_2, \ldots, v_k . As both v_1 and v_k are N-exposed, either $v_1 \notin V_B$ or $v_k \notin V_B$ (because N only leaves one exposed node in the blossom). Suppose $v_1 \notin V_B$.

Let ℓ be the least index such that $v_{\ell} \in V_B$. As no edge of N includes precisely one node in V_B , then $v_{\ell-1}v_{\ell} \notin N$ so ℓ is even. Consider the path $v_1, v_2, \ldots, v_{\ell-1}, \overline{v}$ in \mathcal{G}/V_B where \overline{v} represents the node obtained by contracting V_B . This is an N'-alternating path in \mathcal{G}/V_B .

In either case, we see N' is not a maximum matching in \mathcal{G}/V_B . Finally, as |M'| = |N'| we see that M' is also not a maximum matching in \mathcal{G}/V_B .

12.2 *M*-Alternating Forests

The concept of an M-alternating forest helps us find either alternating paths or blossoms with stems. As we shall see, if such a forest contains neither, then we can use this as a certificate that M is a maximum matching.

Definition 1 Let M be a matching in a graph $\mathcal{G} = (V; E)$. An M-alternating forest is a subgraph (U; F) of \mathcal{G} where each component is a rooted tree with the following properties. Here, we define the height ht(v) for some $v \in U$ to be its distance to the root of its component (with roots r having ht(r) = 0).

Figure 12.1: An *M*-alternating forest. Note all nodes are required to lie in the forest, but any node not in the forest is matched to another node not in the forest.

- 1. The roots of the trees are exactly the M-exposed nodes.
- 2. Every leaf $v \in U$ has even height.
- 3. Every node $v \in U$ with odd height has its only child being the node u it is matched to. That is, $vu \in M$ is the only edge between v and a node at height ht(v) + 1.

(U; F) is called a maximal M-alternating forest if for any other M-alternating forest (U'; F') with $U \subseteq U'$ we have U = U'.

Figure 12.1 depicts an *M*-alternating forest. Note the first property also means the number of trees in an *M*-alternating forest is exactly |V| - 2|M|.

The following three results show the usefulness of looking at *M*-alternating forests. For brevity, let $\rho(v)$ denote the root of the component of the *M*-alternating forest (U; F) for any $v \in U$ (it will be clear from the context which forest is being discussed).

For the remaining lemmas in this section, we fix (U; F) be an *M*-alternating forest.

Lemma 2 Suppose $u, v \in U$ have even height and $uv \in E$. If $\rho(u) \neq \rho(v)$, the path $\rho(u) - u$ in F, followed by edge uv, followed by the path $v - \rho(v)$ in F is an M-alternating path.

Proof. Immediate from construction.

Lemma 3 Suppose $u, v \in U$ have even height and $uv \in E$. If $\rho(u) = \rho(v)$, let w be the least common ancestor of u and v. Let V_B be all nodes lying between u and v in the tree. Let E_B be all corresponding edges in this path plus the edge uv.

Then $B = (V_B, E_B)$ is an M-blossom and the path in F from $\rho(u)$ to w is a stem for B.

Proof. The set (V_B, E_B) is an odd-length cycle. It is easy to verify any odd-length cycle is factor-critical. By construction, $|M \cap E_B| = \frac{|V_B|-1}{2}$. So B is in fact a blossom.

Figure 12.2: The dashed edge identifies a blossom. The blossom is depicted with grey nodes, and the stem with black nodes (the base of the blossom is shaded both grey and black).

That the $\rho(u) - w$ path in F is a stem for B is immediately verified (note w must also have even height because every odd-height node has only one child in F).

A blossom found this way is depicted in Figure 12.2

Lemma 4 Suppose there is an edge $uv \in E$ with $u \in U$ having even height and $v \notin U$. Then $vw \in M$ for some other $w \notin U$ and $(U \cup \{v, w\}, F \cup \{uv, vw\})$ is an *M*-alternating forest.

Proof. node v must be matched because all exposed nodes are in U (they are the roots of the components). Then node w cannot be in U, otherwise the $w - \rho(w)$ path must have odd length as it would start and end with an edge not in M. So w would have odd height, but the definition of M-alternating forests would then mean $v \in U$. Finally, that adding v, w to U and uv, vw to F leaves an M-alternating forest is then easy to verity.

An alternating path found this way is depicted in Figure 12.3

Lemma 5 Now suppose (U; F) is a maximal *M*-alternating forest. If no edge between even-height nodes exists as in the previous two lemmas, then *M* is a maximum matching.

Proof. There also cannot be an edge uv as in Lemma 4 because (U; F) is maximal. So, every $u \in U$ with even height has all of its neighbours in U and having odd height.

Let $X \subseteq U$ be the set of odd-height nodes and $Y \subseteq U$ the set of even-height nodes. The above observation means each $u \in Y$ forms a singleton (isolated) component in $\mathcal{G} - X$. In other words, eacy $u \in Y$ has its only neighbours being in X.

Note that M leaves |Y| - |X| nodes exposed (the nodes in X are in one-to-one correspondence with the matched nodes in Y). But each matching must match each node of Y into a node of X, so no matching can leave fewer nodes exposed. Therefore, M is a maximum matching in \mathcal{G} .

Figure 12.3: The dashed edge identifies an alternating path. The vertices on this path are depicted in grey.

12.3 The Algorithm

The way this algorithm is used is described in Algorithm 2

Finally, we iterate this by starting with $M \leftarrow \emptyset$ and repeatedly calling $\texttt{augment}(\mathcal{G}, M)$ to get a larger matching until we get a declaration that M is a maximum matching in \mathcal{G} .

Each run of Algorithm 1 can be implemented in O(m) time. Simply use a breadth-first search starting with the M'-exposed nodes as tree roots and expanding all even-height vertices to grow the forest.

Apart from recursive calls, the work done in a single call of **augment** is O(n) (since each alternating path, each matching, and and blossom has size O(n)). There are also O(n) recursive calls as each shrinking of a blossom reduces the number of nodes by at least 2.

Overall, it takes $O(m \cdot n^2)$ time to find an *M*-alternating path, so the overall algorithm takes $O(m \cdot n^3)$ time. This can be sped up a lot by clever observations (in the textbook) that do not explicitly contract a blossom and restart. Between the main discussion in the textbook and the exercises, an $O(n \cdot m \cdot \log n)$ algorithm is devised. The running time can be improved to $O(\sqrt{n} \cdot m)$ using observations about alternating many paths simultaneously in linear time¹.

¹see, e.g., V. V. Vazirani, A simplification of the MV matching algorithm and its proof, https://arxiv.org/abs/1210.4594, 2012. This is based on earlier work by Micali and Vazirani

Algorithm 1 Blossom, Alternate, or Quit

Input: A graph $\mathcal{G}' = (V', E')$ and a matching M'. **Output:** An *M*-alternating path *P*, an *M*-blossom \mathcal{B} with a stem *P*, or a declaration that *M* is a maximum matching. $U \gets M'\text{-exposed nodes}$ $F \leftarrow \emptyset$ Let \mathcal{T} denote the forest (U, F) throughout the algorithm. while there is some $uv \in E$ with u having even height in \mathcal{T} and $v \notin U$ do $w \leftarrow$ the vertex with $vw \in M'$ {we showed $w \notin U$ } $U \leftarrow U \cup \{v, w\}$ $F \leftarrow F \cup \{uv, vw\}$ end while {Now (U, F) is a maximal M'-alternating forest} if $uv \in E$ for some u, v having even height in \mathcal{T} then if u, v are in the same component then **return** the corresponding blossom (the u - v path in \mathcal{T} plus edge uv) else **return** the corresponding alternating path end if else **return** a declaration that M' is a maximum matching in \mathcal{G}' end if

Algorithm 2	2	$\texttt{augment}(\mathcal{G}')$, M')
-------------	---	----------------------------------	------	---

Input: A graph $\mathcal{G}' = (V', E')$ and a matching M'Output: A larger matching M'' or a declaration that M' is a maximum matching run Algorithm 1 with \mathcal{G}', M' if a blossom $\mathcal{B} = (V_B, E_B)$ is returned then if augment $(\mathcal{G}'/V_B, M' - E_B)$ finds a larger matching \widehat{M} then $M'' \leftarrow \widehat{M}$ plus a matching of size $\frac{|V_B|-1}{2}$ in \mathcal{B} (avoiding the only \widehat{M} matched vertex in V_B , if any) return M''else return a declaration that M' is a maximum matching in \mathcal{G}' end if else if an M'-alternating path P is returned then return $(M' - P) \cup (P - M')$ else return a declaration that M' is a maximum matching in \mathcal{G}' end if