
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 12 (Oct 3): Maximum Matchings in General Graphs
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

12.1 Alternating Paths Proof

We begin by completing the proof of the following theorem. See the previous lecture for notation.

Recall that ν(G) denotes the size of a maximum matching in G.

Theorem 1 Let M be a matching, B = (VB ;EB) an M -blossom with base vk and stem v1, . . . , vk consisting of

the edge set P . Then ν(G) = |M | iff ν(G/VB) = |M | − |VB |−1
2 = |M − EB |

Proof.[second half]

Suppose, now, that M is not a maximum matching in G. The set N := (M − P) ∪ (P −M) is also a matching
in G with |M | = |N | that leaves the base of blossom B exposed. Let N ′ = N − EB and note that N ′ is also a
matching in G/VB (the graph obtained by contracting the blossom).

Because N is not a maximum matching, there is an N -alternating path Q in G. We show in two cases that we
can construct an N ′-alternating path in G/VB .

• Case: Q shares no nodes with Vb.
Then Q is also an N ′-alternating path in G/VB .

• Case: Q shares a node with Vb.
Write the nodes of Q as v1, v2, . . . , vk. As both v1 and vk are N -exposed, either v1 6∈ VB or vk 6∈ VB
(because N only leaves one exposed node in the blossom). Suppose v1 6∈ VB .

Let ` be the least index such that v` ∈ VB . As no edge of N includes precisely one node in VB , then
v`−1v` 6∈ N so ` is even. Consider the path v1, v2, . . . , v`−1, v in G/VB where v represents the node obtained
by contracting VB . This is an N ′-alternating path in G/VB .

In either case, we see N ′ is not a maximum matching in G/VB . Finally, as |M ′| = |N ′| we see that M ′ is also
not a maximum matching in G/VB .

12.2 M-Alternating Forests

The concept of an M -alternating forest helps us find either alternating paths or blossoms with stems. As we
shall see, if such a forest contains neither, then we can use this as a certificate that M is a maximum matching.

Definition 1 Let M be a matching in a graph G = (V ;E). An M-alternating forest is a subgraph (U ;F)
of G where each component is a rooted tree with the following properties. Here, we define the height ht(v) for
some v ∈ U to be its distance to the root of its component (with roots r having ht(r) = 0).

12-1

12-2 Lecture 12: Maximum Matchings in General Graphs

Figure 12.1: An M -alternating forest. Note all nodes are required to lie in the forest, but any node not in the
forest is matched to another node not in the forest.

1. The roots of the trees are exactly the M -exposed nodes.

2. Every leaf v ∈ U has even height.

3. Every node v ∈ U with odd height has its only child being the node u it is matched to. That is, vu ∈M is
the only edge between v and a node at height ht(v) + 1.

(U ;F) is called a maximal M-alternating forest if for any other M -alternating forest (U ′;F ′) with U ⊆ U ′
we have U = U ′.

Figure 12.1 depicts an M -alternating forest. Note the first property also means the number of trees in an
M -alternating forest is exactly |V | − 2|M |.

The following three results show the usefulness of looking at M -alternating forests. For brevity, let ρ(v) denote
the root of the component of the M -alternating forest (U ;F) for any v ∈ U (it will be clear from the context
which forest is being discussed).

For the remaining lemmas in this section, we fix (U ;F) be an M -alternating forest.

Lemma 2 Suppose u, v ∈ U have even height and uv ∈ E. If ρ(u) 6= ρ(v), the path ρ(u)− u in F , followed by
edge uv, followed by the path v − ρ(v) in F is an M -alternating path.

Proof. Immediate from construction.

Lemma 3 Suppose u, v ∈ U have even height and uv ∈ E. If ρ(u) = ρ(v), let w be the least common ancestor
of u and v. Let VB be all nodes lying between u and v in the tree. Let EB be all corresponding edges in this path
plus the edge uv.

Then B = (VB , EB) is an M -blossom and the path in F from ρ(u) to w is a stem for B.

Proof. The set (VB , EB) is an odd-length cycle. It is easy to verify any odd-length cycle is factor-critical. By

construction, |M ∩ EB | = |VB |−1
2 . So B is in fact a blossom.

Lecture 12: Maximum Matchings in General Graphs 12-3

Figure 12.2: The dashed edge identifies a blossom. The blossom is depicted with grey nodes, and the stem with
black nodes (the base of the blossom is shaded both grey and black).

That the ρ(u)−w path in F is a stem for B is immediately verified (note w must also have even height because
every odd-height node has only one child in F).

A blossom found this way is depicted in Figure 12.2

Lemma 4 Suppose there is an edge uv ∈ E with u ∈ U having even height and v 6∈ U . Then vw ∈M for some
other w 6∈ U and (U ∪ {v, w}, F ∪ {uv, vw}) is an M -alternating forest.

Proof. node v must be matched because all exposed nodes are in U (they are the roots of the components).
Then node w cannot be in U , otherwise the w−ρ(w) path must have odd length as it would start and end with
an edge not in M . So w would have odd height, but the definition of M -alternating forests would then mean
v ∈ U . Finally, that adding v, w to U and uv, vw to F leaves an M -alternating forest is then easy to verity.

An alternating path found this way is depicted in Figure 12.3

Lemma 5 Now suppose (U ;F) is a maximal M -alternating forest. If no edge between even-height nodes exists
as in the previous two lemmas, then M is a maximum matching.

Proof. There also cannot be an edge uv as in Lemma 4 because (U ;F) is maximal. So, every u ∈ U with even
height has all of its neighbours in U and having odd height.

Let X ⊆ U be the set of odd-height nodes and Y ⊆ U the set of even-height nodes. The above observation
means each u ∈ Y forms a singleton (isolated) component in G −X. In other words, eacy u ∈ Y has its only
neighbours being in X.

Note that M leaves |Y |−|X| nodes exposed (the nodes in X are in one-to-one correspondence with the matched
nodes in Y). But each matching must match each node of Y into a node of X, so no matching can leave fewer
nodes exposed. Therefore, M is a maximum matching in G.

12-4 Lecture 12: Maximum Matchings in General Graphs

Figure 12.3: The dashed edge identifies an alternating path. The vertices on this path are depicted in grey.

12.3 The Algorithm

The way this algorithm is used is described in Algorithm 2

Finally, we iterate this by starting with M ← ∅ and repeatedly calling augment(G,M) to get a larger matching
until we get a declaration that M is a maximum matching in G.

Each run of Algorithm 1 can be implemented in O(m) time. Simply use a breadth-first search starting with the
M ′-exposed nodes as tree roots and expanding all even-height vertices to grow the forest.

Apart from recursive calls, the work done in a single call of augment is O(n) (since each alternating path, each
matching, and and blossom has size O(n)). There are also O(n) recursive calls as each shrinking of a blossom
reduces the number of nodes by at least 2.

Overall, it takes O(m · n2) time to find an M -alternating path, so the overall algorithm takes O(m · n3) time.
This can be sped up a lot by clever observations (in the textbook) that do not explicitly contract a blossom
and restart. Between the main discussion in the textbook and the exercises, an O(n · m · log n) algorithm is
devised. The running time can be improved to O(

√
n · m) using observations about alternating many paths

simultaneously in linear time1.

1see, e.g., V. V. Vazirani, A simplification of the MV matching algorithm and its proof, https://arxiv.org/abs/1210.4594,
2012. This is based on earlier work by Micali and Vazirani

Lecture 12: Maximum Matchings in General Graphs 12-5

Algorithm 1 Blossom, Alternate, or Quit

Input: A graph G′ = (V ′, E′) and a matching M ′.
Output: An M -alternating path P , an M -blossom B with a stem P , or a declaration that M is a maximum
matching.

U ←M ′-exposed nodes
F ← ∅
Let T denote the forest (U,F) throughout the algorithm.
while there is some uv ∈ E with u having even height in T and v 6∈ U do
w ← the vertex with vw ∈M ′ {we showed w 6∈ U}
U ← U ∪ {v, w}
F ← F ∪ {uv, vw}

end while {Now (U,F) is a maximal M ′-alternating forest}
if uv ∈ E for some u, v having even height in T then

if u, v are in the same component then
return the corresponding blossom (the u− v path in T plus edge uv)

else
return the corresponding alternating path

end if
else

return a declaration that M ′ is a maximum matching in G′
end if

Algorithm 2 augment(G′,M ′)
Input: A graph G′ = (V ′, E′) and a matching M ′

Output: A larger matching M ′′ or a declaration that M ′ is a maximum matching

run Algorithm 1 with G′,M ′
if a blossom B = (VB , EB) is returned then

if augment(G′/VB ,M ′ − EB) finds a larger matching M̂ then

M ′′ ← M̂ plus a matching of size |VB |−1
2 in B (avoiding the only M̂ matched vertex in VB , if any)

return M ′′

else
return a declaration that M ′ is a maximum matching in G′

end if
else if an M ′-alternating path P is returned then

return (M ′ − P) ∪ (P −M ′)
else

return a declaration that M ′ is a maximum matching in G′
end if

