
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 10 (Oct. 5): MMCC Algorithm-Matching in General Graph
Lecturer: Zachary Friggstad Scribe: Arnoosh Golestanian

10.1 Minimum-Cost Bipartite Matching

In this lecture we want to show the correctness of Minimum Mean Cycle Canceling algorithm which was
mentioned in the previous lecture.

For a flow f , let mean(fi) denote the minimum ratio c(Ci)
|Ci| of a cycle in the residual graph Gfi .

Lef fi be the flow after iteration i and Ci be minimum ratio cycle in Gfi . So, mean(fi) :=
c(Ci)
|Ci|

. The following

was shown in the previous lecture.

mean(fi) ≤ mean(fi+1) (1)

mean(fi) ≤ 2 ·mean(fi+m·n) (2)

Let k := m · n(dlogn2 e+ 1)

Lemma 1 For every iteration i where i + k is not the final minimum-cost flow, there exists e ∈ Ci such that
e 6∈ Efj , ∀j ≥ i+ k.

If this holds, then the algorithm will terminate in at most m · k iterations.

Proof.

Observation 1
According to Equation (2) and the definition of k, we have the following:

mean(fi) ≤ 2dlog
n
2 e+1mean(fi+k) ≤ 2n ·mean(fi+k)

where the last inequality is by using an obvious fact that dlogn2 e ≥ logn2 .

Observation 2
Let c′(e) = c(e)−mean(fi+k) for all e ∈ Efi+k

.

Note: For every C in Gfi+k
, c′(C) = c(C)−mean(fi+k) · |C| ≥ 0; because mean(fi+k) ≤ c(C)

|C|
.

So, there exists a potential φ for (Gfi+k
, c′): we have c′φ(e) ≥ 0,∀e ∈ Efi+k

.

Observation 3
0 ≤ c′φ(e) = cφ(e)−mean(fi+k) for all e ∈ Efi+k

.

10-1

10-2 Lecture 10: MMCC Algorithm-Matching in General Graph

By using the definition of c′φ(e).

Observation 4
cφ(Ci) = c(Ci) = mean(fi) · |Ci| ≤ 2n ·mean(fi+k) · |Ci|.

This follows from Observation 1. Hence, there is an edge e∗ ∈ Ci such that cφ(e∗) ≤ 2n ·mean(fi+k).

Observation 5
For this edge e∗ ∈ Efi , we claim e∗ 6∈ Efi+k

. Assume otherwise, then by Observation 3, mean(fi+k) ≤ cφ(e∗) ≤
2n ·mean(fi+k) where the last inequality comes from Observation 4. This is a contradiction since mean(fi+k)
is a strictly negative (because i+ k is not the last iteration).

Claim 1 For every flow f of value γ, e∗ 6∈ Ef if mean(f) ≥ mean(fi+k).

Proof. Let f be a flow of value γ with e∗ ∈ Ef . We will demonstrate a cycle in Gf with mean cost less than
mean(fi+k).

Let g = f − fi+k and g be the corresponding circulation in Gfi+k
: namely set g(e) if g(e) ≥ 0 and g(e) = g(←−e)

if g(e) < 0. We saw in an earlier lecture that constructing g in this manner only puts nonzero flow on edges in
Gfi+k

.

Since, e∗ ∈ Ef − Efi+k
, then g(

←−
e∗) > 0. This, plus the fact that g is a circulation in Gfi+k

means there is a
cycle C∗ in Gfi+k

with e∗ ∈ C∗. Note

c(C∗) = cφ(C∗) =
∑
e∈C∗

cφ(e) = cφ(
←−
e∗) + cφ(C∗ − {

←−
e∗})

If we apply Observation 3 on each all edges in C∗ − {
←−
e∗}, we get that cφ(C∗ − {

←−
e∗}) ≥ (|C∗| − 1) ·mean(fi+k).

Then using Observation 4, we conclude that:

c(C∗) ≥ −2n ·mean(fi+k) + (|C∗| − 1) ·mean(fi+k) > −n ·mean(fi+k)

By considering fi+k − f , we see
←−
C∗ = {←−e : e ∈ C∗} is a cycle in Gf . The above bound means c(

←−
C∗) <

n ·mean(fi+k). So,

mean(f) ≤ c(
←−
C∗)
|
←−
C∗|

≤ c(
←−
C ∗)
n

< mean(fi+k).

This also completes the proof of the theorem.

Using the algorithm to find minimum-ratio cycles in O(mn2) time plus the bound on the number of iterations,
we see that we can find a minimum-cost cycle in time O(m3n3 log n). By using a faster O(mn) algorithm to
find minimum-ratio cycles (in the Korte-Vygen texbook), we can further reduce this running time.

Lecture 10: MMCC Algorithm-Matching in General Graph 10-3

X

Figure 10.1: A set X and the connected components obtained by deleting X (and all incident edges) from G.

10.2 Matchings in General Graph

We shift focus back to computing maximum matchings. Earlier in the course, we saw how to compute a
maximum matching in a bipartite graph in polynomial time. Now we will find maximum matchings in any
undirected graph.

Let G = (V,E) be an undirected graph. For X ⊆ V , let qG(X) be the number of connected components in
G −X with an odd number of vertices, see Figure 10.1.

Definition 1 Graph H = (V ′, E′) is factor critical if for all v ∈ V ′, H− v has a perfect matching.

According to this definition, a graph with just one node is also factor critical.

Theorem 1 Graph G has a perfect matching iff qG(X) ≤ |X| for every X ⊆ V .

Proof.

We prove this by induction on |V |. The case |V | = 1 is trivial: there is no perfect matching and by considering
X = ∅ we see 1 = qG(X) > |X|.

Suppose G has perfect matching and let C be an odd component of G −X. Since every vertex in C is matched
and |C| is odd, then some vertex of C must be matched with a vertex of X. So it must be qG(X) ≤ |X|.

Conversely, suppose that for every X ⊆ V , qG(X) ≤ |X|. Then |V | will be even, otherwise if |V | is odd then some
connected component of V is an odd component, so qG(∅) ≥ 1, which contradicts the assumption qG(∅) ≤ 0.

Let even(H) and odd(H) be the vertex sets of the even components and odd components of a graphH = (V ′, E′),
respectively. Note, for every X ⊆ V ′ we have

|V ′| = |X|+
∑

C∈even(H−X)

|C|+
∑

C∈odd(H−X)

|C| ≡ |X|+ |qH(X)| (mod 2).

In particular, because |V | is even we have for any X ⊆ V that

|X| ≡ qG(X) (mod 2). (10.1)

Next, let X ⊆ V be any maximal set such that |X| = qC(X). Such a set exists by looking at the singleton sets:
for each v ∈ V , qG({v}) ≤ |{v}| = 1 and according to (10.1), qG({v}) ≡ |{v}| ≡ 1 (mod 2). So, qG({v}) = 1.

10-4 Lecture 10: MMCC Algorithm-Matching in General Graph

X

V

even component

Figure 10.2: Example for the proof of Theorem 1

Claim 2 G −X has no even component.

Proof. We prove this claim by contradiction. Assume that C is an even component of G −X. Pick any v in
C. Every odd component of G − (X ∪ {v}) is still an odd component of G −X ′. There will also be at least one
more odd component that is a subgraph of C −{v} (as |C −{v}| is odd). So qG(X ∪{v}) ≥ |X|+ 1. See Figure
10.2.

However, according to our inductive step, qG(X ∪ {v}) = |X|+ 1 which contradicts the maximality of set X.

Comment: The remainder of this proof was completed in the subsequent lecture. So don’t let the following
q.e.d. symbol fool you :)

