CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 10 (Oct. 5): MMCC Algorithm-Matching in General Graph

Lecturer: Zachary Friggstad Scribe: Arnoosh Golestanian

10.1 Minimum-Cost Bipartite Matching

In this lecture we want to show the correctness of Minimum Mean Cycle Canceling algorithm which was
mentioned in the previous lecture.

c(Ci)
ICil

For a flow f, let mean(f;) denote the minimum ratio of a cycle in the residual graph Gy, .

Ci .
Lef f; be the flow after iteration i and C; be minimum ratio cycle in Gy,. So, mean(f;) := ol ) The following

ICi

was shown in the previous lecture.

mean(f;) < mean(fi41) (1)

mean(f;) <2-mean(fitmn) (2)

Let k:=m-n([logy| + 1)

Lemma 1 For every iteration i where i + k is not the final minimum-cost flow, there exists e € C; such that
eg Ey,,Vj>i+k.

If this holds, then the algorithm will terminate in at most m - k iterations.

Proof.

Observation 1
According to Equation (2) and the definition of k, we have the following:

mean(f;) < 2M'°%2 1 mean(fi 1) < 2n - mean(fiiz)

where the last inequality is by using an obvious fact that [logh| > logh.

Observation 2

Let ¢(e) = c(e) — mean(f;1y) for all e € Ey, .

(€)
cl

Note: For every C in Gy, , ¢/(C) = ¢(C) — mean(fi;x) - |C| > 0; because mean(fix) <

So, there exists a potential ¢ for (Gy,,,,c’): we have cj(e) > 0,Ve € Ey, .

Observation 3
0 < cyle) = cy(e) —mean(fity) for all e € By, .
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By using the definition of ¢/, (e).

Observation 4
cs(Ci) = ¢(C;) = mean(f;) - |C;| < 2n - mean(f;1x) - |C;l.

This follows from Observation 1. Hence, there is an edge e* € C; such that cy(e*) < 2n - mean(fiyx).

Observation 5

For this edge e* € Ey,, we claim e* ¢ Ey, . Assume otherwise, then by Observation 3, mean(fi i) < cy(e*) <
2n - mean( f;1) where the last inequality comes from Observation 4. This is a contradiction since mean(f;1)
is a strictly negative (because i + k is not the last iteration).

Claim 1 For every flow f of value v, e* ¢ E if mean(f) > mean(fi ).

Proof. Let f be a flow of value v with e* € FE5. We will demonstrate a cycle in G7 with mean cost less than
mean(fiyr).

Let g = f — fitr and g be the corresponding circulation in Gy,,,: namely set g(e) if g(e) > 0 and g(e) = g(%e)
if g(e) < 0. We saw in an earlier lecture that constructing g in this manner only puts nonzero flow on edges in
Gft+k: *

%
Since, e* € E7 — Ey,,,, then g(e*) > 0. This, plus the fact that g is a circulation in Gy,,, means there is a
cycle C* in Gy, with e* € C*. Note

€)= es(C) = 3 eole) = ep(€F) + o(C* — {e°})

ecC*

— —
If we apply Observation 3 on each all edges in C* — {e*}, we get that ¢4 (C* — {e*}) > (|C*| — 1) - mean(fitr).
Then using Observation 4, we conclude that:

e(C*) > —2n - mean(firx) + (IC*] — 1) - mean(fiyr) > —n - mean(fi 1)

- -
By considering fiir — f, we see C* = {%& : e € C*} is a cycle in G7. The above bound means c(ﬁ) <

n - mean(fi4x). So,
o &) _ e ‘
mean(f) < ﬁ < — < mean(fitx).

This also completes the proof of the theorem.
|

Using the algorithm to find minimum-ratio cycles in O(mn?) time plus the bound on the number of iterations,
we see that we can find a minimum-cost cycle in time O(m?3n3logn). By using a faster O(mn) algorithm to
find minimum-ratio cycles (in the Korte-Vygen texbook), we can further reduce this running time.



Lecture 10: MMCC Algorithm-Matching in General Graph 10-3

Figure 10.1: A set X and the connected components obtained by deleting X (and all incident edges) from G.

10.2 Matchings in General Graph

We shift focus back to computing maximum matchings. FEarlier in the course, we saw how to compute a
maximum matching in a bipartite graph in polynomial time. Now we will find maximum matchings in any
undirected graph.

Let G = (V, E) be an undirected graph. For X C V| let gg(X) be the number of connected components in
G — X with an odd number of vertices, see Figure 10.1.

Definition 1 Graph H = (V', E') is factor critical if for allv € V', H — v has a perfect matching.

According to this definition, a graph with just one node is also factor critical.

Theorem 1 Graph G has a perfect matching iff qg(X) < |X| for every X C V.

Proof.

We prove this by induction on |V|. The case |V| =1 is trivial: there is no perfect matching and by considering
X =0 weseel=qg(X)>|X|

Suppose G has perfect matching and let C' be an odd component of G — X. Since every vertex in C' is matched
and |C| is odd, then some vertex of C' must be matched with a vertex of X. So it must be ¢g(X) < |X]|.

Conversely, suppose that for every X C V, qg(X) < |X|. Then |V| will be even, otherwise if |V is odd then some
connected component of V is an odd component, so gg(#) > 1, which contradicts the assumption gg (@) < 0.

Let even(H) and odd(H) be the vertex sets of the even components and odd components of a graph H = (V', E'),
respectively. Note, for every X C V' we have

Vi=IXI+ > cl+ Y [CI=1X]+ |gn(X)| (mod 2).
Ceeven(H—X) Ceodd(H—X)

In particular, because |V| is even we have for any X C V that
|X| = qg(X) (mod 2). (10.1)

Next, let X C V be any maximal set such that |X| = g¢(X). Such a set exists by looking at the singleton sets:
for each v € V, gg({v}) < [{v}| = 1 and according to (10.1), gg({v}) = {v}| =1 (mod 2). So, gg({v}) = 1.
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even component

Figure 10.2: Example for the proof of Theorem 1

Claim 2 G — X has no even component.

Proof. We prove this claim by contradiction. Assume that C' is an even component of G — X. Pick any v in
C'. Every odd component of G — (X U {v}) is still an odd component of G — X’. There will also be at least one
more odd component that is a subgraph of C'— {v} (as |C' — {v}| is odd). So gg(X U{v}) > |X|+ 1. See Figure
10.2.

However, according to our inductive step, gg(X U {v}) = |X|+ 1 which contradicts the maximality of set X. W

Comment: The remainder of this proof was completed in the subsequent lecture. So don’t let the following
q.e.d. symbol fool you :)



