
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 1 (Sep 2 & 7): Introduction, Bipartite Matching
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

1.1 Introduction

The scribe notes for this course summarize the results we discussed in class with complete proofs. Do not worry
about including much exposition in your writeup, this is mostly a record of the facts.

Common Assumptions
Often we let n denote the number of vertices and m the number of edges of a given graph, as long at it is clear
from the context what graph is being discussed.

A graph is undirected, unless we explicitly call it a directed graph.

Unless stated otherwise, we will assume all undirected graphs are connected and all directed graphs are weakly
connected (meaning their undirected version is connected). It is almost always a simple exercise to take any
algorithm for a connected (or weakly connected) graph and have it work on an arbitrary graph with only
O(n+m) overhead. This assumption also means m ≥ n− 1, which will simplify some running time bounds.

We do not discuss the running time of each small step of the algorithms. Usually we only discuss the main ideas
behind implementing it with the target running time bound, the smaller details are left up to you.

1.2 Bipartite Matching

Let G = (V ;E) denote an undirected graph. For some S ⊆ V , let

δ(S) = {uv ∈ E : |S ∩ {u, v}| = 1}.

That is, δ(S) is all edges with precisely one endpoint in S. For a vertex v ∈ V , we let δ(v) denote δ({v}). This
is the set of edges having v as an endpoint.

Definition 1 A matching M ⊆ E is simply a subset of edges such that |δ(v) ∩M | ≤ 1.

A matching is depicted in Figure 1.1.

Definition 2 In the Maximum Cardinality Matching problem, we are given an undirected graph G =
(V ;E), the goal is to find a matching M of maximum possible size.

We will eventually describe an algorithm for solving Maximum Cardinality Matching in polynomial time
in any graph. In our first lecture topic, we will solve it in bipartite graphs.

Definition 3 An undirected graph G = (V ;E) is bipartite if it is possible to partition V into two sets of
vertices L,R such that each e ∈ E has one endpoint in L and the other in R.

1-1

1-2 Lecture 1: Introduction, Bipartite Matching

Figure 1.1: A matching (bold edges).

L R

Figure 1.2: A bipartite graph.

Figure 1.2 shows a bipartite graph with “sides” L and R.

Theorem 1 The Maximum Cardinality Matching problem can be solved in O(n · m) time in bipartite
graphs.

The algorithm iterates the following procedure: given a matching M we either find a matching M ′ with |M ′| =
|M | + 1 or else correctly declares that M is a maximum-size matching. The main concept that drives the
algorithm is that of an alternating path.

1.2.1 Alternating Paths

Definition 4 Let M be a matching in a graph G = (V ;E). A vertex v ∈ V is M-matched if some edge in M
has v as an endpoint, otherwise v is M-exposed. An M-alternating path is a sequence of distinct vertices
v1, v2, . . . , vk with k ≥ 2 where v1, vk are M -exposed, vivi+1 ∈ M for every even index i, and vivi+1 ∈ E −M
for every odd index i.

We sometimes drop the reference to M when using the term M -exposed, M -matched, and M -alternating if the
matching being discussed is clear. An alternating path is depicted in Figure 1.3.

Lecture 1: Introduction, Bipartite Matching 1-3

Figure 1.3: An alternating path. Replacing the highlighted edges in the matching with the highlighted edges
not in the matching produces a larger matching.

Lemma 1 Let M be a matching in a graph G = (V ;E) and P the set of edges of some M -alternating path. Let
M ′ = (M − P) ∪ (P −M). Then M ′ is a matching and |M ′| = |M |+ 1.

Proof. Let v1, v2, . . . , vk be the sequence of vertices of the M -alternating path.

NoteM−P is a matching that leaves all of v1, v2, . . . , vk exposed. Also note that P−M = {v1v2, v3v4, . . . , vk−1vk}
is a matching that only matches vertices on M . Therefore, M ′ = (M − P) ∪ (P −M) is a matching.

Conclude by noting |M ′| − |M | = |P −M | − |P ∩M | = k
2 −

(
k
2 − 1

)
= 1.

Thus, we can find larger matchings by finding alternating paths. It turns out that the lack of an M -alternating
path signals that M is a maximum matching.

Lemma 2 M is a maximum matching if and only if there is no M -alternating path.

Proof. We already showed the existence of an M -alternating path shows M is not a maximum matching. So
now suppose M is not a maximum matching. We will find an M -alternating path.

Let M∗ be a maximum matching, so |M∗| > |M |. Construct the graph H = (V ;M ∪̇M∗), meaning add each
edge from M and M∗ and keep two copies of each e ∈ M ∩M∗ (note H may have parallel edges). Since M
and M∗ are matchings, then degH(v) ≤ 2 for each v ∈ V . This is equivalent to saying that H is comprised of
vertex-disjoint paths and cycles (parallel edges are length-2 cycles).

Every cycle in H alternates between edges in M and edges in M∗ so |C ∩M∗| = |C ∩M | for every cycle C.
This, plus the fact that |M∗| > |M |, means there is a path P in H with |P ∩M∗| > |P ∩M |. Such a path P
starts and ends with edges in M∗, so its endpoints are M -exposed. That is, P is an M -alternating path.

Note
In proving Lemmas 1 and 2, we did not rely on the bipartite structure of G. These will also be the foundation
of our Maximum Cardinality Matching algorithm in general graphs. The main effort is then to find an
alternating path. It is much simpler to find such a path in a bipartite graph.

1.2.2 Finding Alternating Paths in Bipartite Graphs

Lemma 3 Given a matching M in a bipartite graph G = (L ∪R;E) we can either find an M -alternating path
or determine that no M -alternating path exists in O(m) time.

Proof. Let
−→
GM be the directed graph (V ∪ {s, t};

−→
EM) obtained from G by first directing each edge of M to

point toward L and directing each edge of E−M to point toward R. Then add two new auxiliary vertices s, t to

1-4 Lecture 1: Introduction, Bipartite Matching

11

44

33 22

L R

ss tt

Figure 1.4: The directed graph constructed from the matching depicted in bold and an s− t path s, 1, 2, 3, 4, t
corresponding to the alternating path 1, 2, 3, 4 in G.

−→
GM ; s has an outgoing edge to each M -exposed vertex in L and a t has an incoming edge from each M -exposed
vertex in R.

Any s− t path
−→
P in

−→
GM corresponds to an M -alternating path: if we remove s, t from

−→
P then it starts and ends

at M -exposed vertices. Furthermore, by how the edges of G were oriented, the (original undirected) edges used

by
−→
P alternate between an edge of E −M and an edge of M . Conversely, any M -alternating path v1, . . . , vk in

G can be extended to a s− t path in
−→
GM in the obvious way: in

−→
GM the path is s, v1, . . . , vk, t.

Such an s− t path can be found in O(m) time using, say, a breadth-first search.

1.2.3 Summary

Algorithm 1 succinctly describes the main loop of the algorithm. Algorithm 2 describes how to find an M -
alternating path. Note The running time of Algorithm 2 is O(m); one can run a linear-time search (e.g.
breadth-first or depth-first search) to find an s − t path. The loop in algorithm 1 will iterate at most n

2 + 1
times because each iteration, apart from the last iteration, will reduce the number of M -exposed vertices by 2.

Algorithm 1 Maximum Cardinality Matching Algorithm for Bipartite Graphs

Input: Undirected bipartite graph G = (L ∪R,E)
Output: A maximum-size matching M ⊆ E.

M ← ∅
while G contains an M -alternating path P {c.f. Algorithm 2} do
M ← (M − P) ∪ (P −M)

end while
return M

Lecture 1: Introduction, Bipartite Matching 1-5

Algorithm 2 Finding an M -alternating path.

Input: Undirected bipartite graph G = (L ∪R,E), matching M
Output: An M -alternating path or none
−→
GM ← (V ∪ {s, t},

−−→
EM) {as described in the proof of Lemma 3}

if there is an s− t path
−→
P in

−→
GM then

return edges of G corresponding to edges used in
−→
P

else
return none

end if

1.3 Minimum Vertex Cover

Definition 5 Let G = (V ;E) be an undirected graph. A vertex cover U ⊆ V is a subset of nodes such that
each e ∈ E has at least one endpoint in U . The Minimum Cardinality Vertex Cover problem is to find a
vertex cover U with minimum possible size.

Unlike Maximum Cardinality Matching, the Minimum Cardinality Vertex Cover problem is NP-
hard in general. However, it can be solved efficiently in bipartite graphs.

To start, we note the following relationship that holds for any graph.

Lemma 4 Let G = (V ;E) be an undirected graph, M a matching, and U a vertex cover. Then |M | ≤ |U |.

Proof. For each e ∈ M , let ve be an endpoint of e that lies in U . Note that ve 6= ve′ for distinct e, e′ ∈ M
because M is a matching. Therefore |M | = |{ve : e ∈M}| ≤ |U |.

For bipartite graphs, we will now see that a maximum matching has the same size as a minimum vertex cover.
This is an example of many min/max relations we will see throughout the term.

Theorem 2 (König-Egervary Theorem) Let G = (L ∪ R;E) be a bipartite graph and M a maximum

matching. Furthermore, let Z be the vertices that can be reached by a directed path from s in
−→
GM . Then

U = (L− Z) ∪ (R ∩ Z) is a vertex cover with |U | = |M |.

Proof. We first show that U is a vertex cover. Consider any e = uv ∈ E with u ∈ L, v ∈ R. If e ∈M then the

only edge in
−→
GM entering u is the directed version of e in

−→
GM . So it cannot be that u 6∈ Z yet v ∈ Z, so u ∈ U .

If e 6∈M then e is directed from u to v in
−→
GM . Again, it cannot be that u ∈ Z yet v 6∈ Z, so u ∈ U .

We finish by showing |U | = |M |. Note that v ∈ U means v is not M -exposed: all M -exposed vertices in L
are reachable from s by one edge (so are in Z) and no M -exposed vertices in R are in Z otherwise we have an
M -alternating path. We also cannot have u, v ∈ U for any uv ∈ M because v ∈ U ∩ R and the fact that the

edge uv is directed from v to u in
−→
GM would imply u ∈ Z ∩ L, contradicting u ∈ U .

Thus, each edge of M has precisely one endpoint in U and no M -exposed nodes are in U , so |U | = |M |.

This is illustrated in Figure 1.5. Note the assumption that G is bipartite is necessary, the complete graph K3

on 3 vertices has maximum matching size 1 but minimum vertex cover size 2.

1-6 Lecture 1: Introduction, Bipartite Matching

L R

ss tt

Figure 1.5: The shaded vertices are reachable from s and the vertices with dashed boundaries are the vertex
cover. Also, the set S ⊆ L of shaded nodes on the left has |N(S)| < |S| as per Hall’s Criteria (Section 1.4).

1.4 Hall’s Criteria

We can get another useful statement from these observations. A trivial bound on the size of a maximum matching
is |L| (and also |R|) There is a useful condition that tells us precisely when this bound can be attained.

Notation: For an undireced graph G = (V ;E) and some S ⊆ V , let N(S) be the vertices not in S that are
adjacent to a vertex in S. More precisely, N(S) = {v ∈ V − S : uv ∈ E for some u ∈ S}.

Theorem 3 (Hall’s Criteria) Let G = (L ∪ R;E) be a bipartite graph. The size of a maximum matching is
|L| if and only if |N(S)| ≥ |S| for every S ⊆ L.

Proof. If |N(S)| < |S| for some S ⊆ L then clearly no matching can match all vertices in S so the maximum
matching has size < |L|.

Conversely, suppose the maximum matching M has |M | < |L|. As in the proof of Theorem 2, let Z be all

vertices reachable from s in
−→
GM and let S = L ∩ Z. We claim every w ∈ N(S) is matched to some node in S.

First, note that w cannot be M -exposed, otherwise the fact that w ∈ N(S) and that w is not matched means
w ∈ Z. But this is impossible; a path from s to an M -exposed node in R yields an M -alternating path
contradicting the fact that M is a maximum matching.

So w is matched to a vertex, say to u ∈ L. We now show u ∈ S. Assume otherwise. Then vw ∈ E −M for

some v ∈ S, v 6= u (in order for w to be in N(S)). But vw 6∈ M means vw is directed toward w in
−→
GM . This,

plus the fact that v ∈ S means w ∈ Z, so then u ∈ S as well because uw ∈M .

The fact that every w ∈ N(S) is matched to some vertex in S shows |N(S)| ≤ |S|. But |M | < |L| means there
is an M -exposed vertex in L. All M -exposed vertices of L also lie in S, so in fact |N(S)| < |S|.

An example of a set S ⊆ L with |N(S)| < |S| when G does not have a matching of size |L| is also depicted in
Figure 1.5.

Lecture 1: Introduction, Bipartite Matching 1-7

1.5 The Hopcroft-Karp Matching Algorithm

The previous Maximum Cardinality Matching algorithm in bipartite graphs finds a maximum matching
in time O(n ·m) by iterating an O(m)-time algorithm that either certifies the current matching M is maximum
or finds a matching M ′ with |M ′| = |M |+ 1.

We can speed this up by sometimes finding a matching M ′ with |M ′| being much larger than |M | in O(m)
time, which should reduce the number of iterations. This is accomplished by identifying many vertex-disjoint
alternating paths and simultaneously alternating the matching along each such path.

Definition 6 Let M be a matching in a graph G = (L ∪ R;E). Let αM denote the length of a shortest M -
alternating path. A collection of M -alternating paths P1, P2, . . . , Pb is M-blocking if:

• The paths are vertex-disjoint.

• Pi = αM for each 1 ≤ i ≤ b.

• Every M -alternating path of length αM shares a vertex with at least one Pi.

The following is proven in the same way as Lemma 1, keeping in mind the paths are vertex-disjoint.

Lemma 5 If P1, . . . , Pb are vertex-disjoint M -alternating paths, then M ′ = (M−∪iPi)∪(∪Pi−M) is matching
with |M ′| = |M |+ b.

The improved algorithm (Algorithm 3) simply searches for a blocking collection of alternating paths in each
iteration, rather than just a single alternating path as before. We will soon show how to find such a blocking
collection in linear time.

Algorithm 3 Hopcroft-Karp Algorithm for Maximum Cardinality Matching in Bipartite Graphs

Input: Undirected bipartite graph G = (L ∪R,E)
Output: A maximum-size matching M ⊆ E.

M ← ∅
while G contains an M -alternating path do
P1, P2, . . . , Pb ← an M -blocking collection of paths {c.f. Algorithm 4}
M ← (M − ∪iPi) ∪ (∪Pi −M)

end while
return M

To analyze the running time, we first show the length of the shortest alternating path strictly increases if we
alternate a matching by a collection of blocking paths.

Lemma 6 Let M be a matching and P1, . . . , Pk be a blocking collection of paths. Let M ′ = (M−∪iPi)∪(∪iPi−
M). Then αM ′ ≥ αM + 1.

Proof. Suppose otherwise and let Q be an M ′-alternating path with |Q| ≤ αM . Say Q follows vertices
v1, v2, . . . , vk where v1, vk are M ′-exposed. Note that v1 and vk are then also M -exposed as every vertex lying
on some Pi is matched in M ′.

Consider the directed graph H with edges formed by taking the union of the directed edges (from
−→
GM) lying on

the paths Pi and the directed edges (from
−−→
GM ′) of Q. If there are vertices u, v such that uv and vu are both

1-8 Lecture 1: Introduction, Bipartite Matching

edges of H then remove both copies. Let the resulting set of directed edges be F . Now, any edge uv of Q that

is not an edge of
−→
GM must have that vu was on some Pi. So all edges of F are also edges in

−−→
GM .

Let S be the set of b+ 1 vertices at the start of Q or some Pi and let T be the set of b+ 1 vertices at the end
of Q or some Pi. By construction

• δinH (v) = δoutH (v) for each v ∈ V − (S ∪ T),

• δinH (v) = 0, δoutH (v) = 1 for each v ∈ S, and

• δinH (w) = 1, δoutH (w) = 0 for each w ∈ T .

We can decompose H into b + 1 edge-disjoint paths
−→
GM , each of which corresponds to an M -alternating path.

To see this, pick any vertex in S, arbitrarily walk until some end vertex in T , remove the edges of the path, and
repeat until all start vertices are used. The condition δin(v) = δout(v) for every v ∈ V − (S ∪T) guarantees this
will succeed.

The total number of edges in these b+ 1 paths is at most

b∑
i=1

|Pi|+ |Q| − 2|{uv ∈ Q : vu ∈ ∪iPi}| ≤ (b+ 1)αM − 2|{uv ∈ Q : vu ∈ ∪iPi}|.

If the latter term is not 0, then the total number of edges on these b + 1 paths is strictly less than (b + 1)αM

meaning some M -alternating path has length strictly less than αM , a contradiction.

So the latter term is 0 meaning Q is in also an M -alternating path (in addition to being an M ′-alternating
path). Since it is a shortest M -alternating path (by assumption |Q| ≤ αM) and since the Pi are a blocking
collection, there is some vj lying on both Q and some Pi.

Note that j 6= 1, k because v1, vk are M ′-exposed so they do not lie on any Pi. If vj ∈ L then vj−1vj is the

only edge entering vj in
−→
GM so vj−1vj ∈ Q ∩ Pi. On the other hand, if vj ∈ R then vjvj+1 is the only edge

exiting vj in
−→
GM and we see vjvj+1 ∈ Q ∩ Pi. This yields a contradiction: the path Q is both M -alternating

and M ′-alternating so none of the directed edges it traverses can by traversed by some Pi (as the edge would

be directed different ways in
−→
GM and

−−→
GM ′).

In all cases considered, we arrived at a contradiction so it must be that αM ′ ≥ αM + 1.

Finally, we bound the number of iterations.

Lemma 7 The number of iterations of the loop in Algorithm 3 is at most 2
√
n+ 1.

Proof. Since αM strictly increases in each iteration, then after
√
n iterations we have αM ≥

√
n. Let M∗ be

a maximum matching and M the matching after
√
n iterations. Consider the (multi) graph H = (G;M∗∪̇M)

constructed in the proof of Lemma 2. Let C be the cycles in H and P the paths in H.

For each P ∈ P, if P begins and ends with M∗-exposed vertices then it is an M∗-alternating path, contradicting
the fact that M∗ is a maximum matching. So we write P = P0 ∪P1 where P0 are the paths with one endpoint
being M -exposed and the other being M∗-exposed and P1 are the paths with both endpoints being M -exposed.
Then

|M∗| − |M | =
∑
C∈C

(|M∗ ∩ C| − |M ∩ C|) +
∑
P∈P0

(|M∗ ∩ P | − |M ∩ P |) +
∑
Q∈P1

(|M∗ ∩Q| − |M ∩Q|)

= 0 + 0 + |P1|

Lecture 1: Introduction, Bipartite Matching 1-9

Every path in P1 has length ≥ αM ≥
√
n, so

|P1| ≤
|M∗|+ |M |√

n
≤ n/2 + n/2√

n
=
√
n.

Since each iteration is guaranteed to find at least one alternating path (provided there is one), then in at most
|P1|+ 1 ≤

√
n+ 1 further iterations we will find that there is no further alternating path. The total number of

iterations is then at most 2
√
n+ 1.

1.5.1 Finding Blocking Paths

We can find a collection of M -blocking paths in linear time.

1. Compute the shortest s − v path length distM (v) in
−→
GM in O(m) time using a breadth-first search. If

distM (t) = ∞ (i.e. is unreachable from S) then there is no M -alternating path and M is a maximum
matching and we quit. Note αM = distM (t)− 2.

2. Otherwise, let I = (V ′;E′) be the following directed graph with V ′ being the disjoint union of Vi = {v :

distM (v) = i} and edges uv from
−→
GM with distM (v) = distM (u) + 1. Note that I is a directed and acyclic

graph.

3. Perform a DFS from each exposed node in L with the following modification. If an exposed node v ∈ R
is reached then add the current s− v path (excluding s) to the collection of blocking paths and restart a
DFS from the next exposed node (remembering which nodes have already been visited).

Algorithm 4 Finding Blocking Paths

Input: Undirected bipartite graph G = (L ∪R,E), matching M
Output: A collection of M -blocking paths or none

compute distM (v) for every v ∈ V ∪ {s, t} in
−→
GM using a breadth-first search

if distM (t) = +∞ (i.e. t not reached) then
return none

end if
construct I as described above
P = ∅ {the blocking collection of paths}
seen[v]← false for each v ∈ V
for each exposed v ∈ L do

if DFS-Blocking(I, v, {u ∈ R : u is M-exposed}, seen) returns a path then
P ← P ∪ {P}

end if
end for
return P

Lemma 8 Algorithm 4 finds a collection of blocking paths in O(m) time.

Proof. The BFS to compute distances takes O(m) time as does constructing I. The DFS will never expand a
vertex more than once, so the total running time is O(m).

Any path discovered by the DFS is a shortest M -alternating path because any path in I ending at an exposed
vertex must be an shortest M -alternating path (by construction). The paths returned are vertex-disjoint because

1-10 Lecture 1: Introduction, Bipartite Matching

Algorithm 5 DFS-Blocking

Input: Directed graph I, vertex v, target set of nodes T , boolean table seen
Output: A path or none

if seen[v] = true then
return none

end if
seen[v]← true
if v ∈ T then

return trivial path starting and ending at v
end if
for each edge vw in I do

if DFS-Blocking(I, w, T , seen) returns a path P then
prepend edge vw to P
return P

end if
end for
return none

the DFS never expands a vertex more than once. Suppose otherwise, and that Q is a shortest M -alternating
path that is disjoint from paths in P. Then Q is a path between exposed vertices in I. Note the start node v0
of Q has seen(v0) = true because DFS-Blocking was called with v0 from Algorithm 4. Let v be the node of P
that had seen[v] marked true first in the algorithm.

At this point of the algorithm, there was a path from v to the endpoint of Q consisting vertices u with seen[u] =
false. But since v does not lie on any path in P we know that the recursive call from v failed to find such a
path. This is a contradiction.

Summary
We can find a collection of blocking paths in O(m) time. The procedure that iterates finding a collection
of blocking paths and alternating the current matching with this collection runs for O(

√
n) iterations. So in

O(
√
n ·m) time we find a maximum matching.

