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Exercise 1)
Marks: 5

Let G = (V ;E) be a connected graph. Consider the following 2-player game. Players alternate
turns where each player i ∈ {1, 2} maintains some Fi ⊆ E where F1∩F2 = ∅. Initially both F1 and
F2 are empty. Player 1 plays first.

A play by player i is simply adding some edge of E − (F1 ∪F2) to Fi. Once F1 ∪F2 = E, the game
ends. Player 1 wins if (V ;F2) is disconnected, player 2 wins if (V ;F2) is connected.

Here you will show player 2 has a winning strategy if and only if there are two edge-disjoint spanning
trees. To get you started, note that the specialization of the matroid partition min/max theorem
proven in class shows G has two disjoint spanning trees if and only if

2 · (|V | − 1) ≤ min
F⊆E
|E − F |+ 2 · r(F ).

• Show that if G has two edge-disjoint spanning trees then no matter what player 1 chooses in
their turn player 2 can maintain that either F2 already contains a spanning tree or there are
two spanning trees T1, T2 such that T1 ∩T2 = F2 and both T1−F2, T2−F2 ⊆ E−F1 (i.e. are
not yet grabbed by any player).

• For a partition π ⊆ 2V of V into |π| parts let ∂(π) be all edges in E that have endpoints in
different parts. Show G has two edge-disjoint spanning trees if and only if |∂(π)| ≥ 2(|π| − 1)
for all partitions π of V .
Hint: For the “harder” direction, start by showing the minimum of the expression in the
min/max relationship recalled above is achieved at some set F where E − F is of the form
∂(π) for some partition π.

• Show that if G does not have two edge-disjoint spanning trees then player 1 can ensure player
2 does not win. The previous part might be helpful.

Exercise 2)
Marks: 3
Let G = (V,E) be an undirected graph. Let I = {F ⊆ E : each component of (V ;F ) has at most one cycle}.
Show M = (E, I) is a matroid.
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A direct proof is possible (though tedious). A more elegant proof shows that this supposed matroid
is actually of a type of matroid we already saw in class. You may assume anything on the list of
matroid examples from Lecture 26 is a matroid, even if we did not prove it.

Exercise 3)
Marks: 5

A common question asked in matroid theory is whether a matroid is representable over a field F.
That is, given a matroidM = (X, I) is there some matrix A over F whose columns are indexed by
X such that Y ∈ I if and only if the columns of A indexed by Y are linearly independent?

• Let M = (E, I) be a graphic matroid over a graph G = (V ;E). Pick an arbitrary direction
for each edge e ∈ E. Let A be a matrix over R with rows indexed by V and columns indexed
by E such that for each column e = uv ∈ E we have Av,e = 1 and Au,e = −1, and Aw,e = 0
for w 6∈ {u, v}. Show thatM = (E, I) is the same as the vector matroid given by the columns
of A.

Interesting Note: You can maybe see that A is totally unimodular. The class of matroids
representable over R using totally unmodular matrices is, interestingly, the class of matroids
representable over all fields.

• Let H = (L ∪ R;E) be a bipartite graph. For each e ∈ E, let xe be a variable over Q (the
rational numbers). Let A be a matrix whose rows are indexed by L and whose columns are
indexed by R where Auv = xuv if uv ∈ E and Auv = 0 if uv 6∈ E.

Consider any UL ⊆ L and UR ⊆ R with |UL| = |UR|. Let A′ be the submatrix of A indexed
by UL and UR. Show that detA′ is a nonzero polynomial if and only if the subgraph of H
induced by UL ∪ UR has a perfect matching.

Hint: Think of how permutations in the definition of determinant correspond to subsets of
edges of such a matrix.

• For this exercise, you may assume (without proof), the following result.

Lemma 1 Let f1, f2, . . . , fk ∈ Q[x1, x2, . . . , xm] be nonzero polynomials. Then there are
values z1, z2, . . . , zm ∈ Q such that fi(z1, z2, . . . , zm) 6= 0 for each 1 ≤ i ≤ k.

Using this and the previous part, show that every transversal matroid is representable by a
matrix over Q.

Interesting Note: One can even show that every transversal matroid is representable over
a sufficiently large finite field using essentially the same proof with the above lemma replaced
by an application of the Schwartz-Zippel Lemma:
http://eccc.hpi-web.de/report/2010/096/

http://eccc.hpi-web.de/report/2010/096/


Exercise 4)
Marks: 4

The image associated with this exercise has some colours that are crucial to the understanding of
this problem. Let me know if you are having difficulty seeing the different colours in the picture.

Let M1 = (E, I1) be the graphic matroid given by the graph below and let M2 = (E, I2) be the
following partition matroid over E. Each e ∈ E is coloured either red, green, or blue as depicted
in the figure. Then F ⊆ E is in I2 if F contains at most 2 red edges, at most 1 green edge, and at
most 3 blue edges.

Finally, let F ⊆ E be the thick edges in the picture (the thinner dashed edges are E − F ).

• Construct the graph GF , the bipartite directed graph we used in the matroid intersection
algorithm.

• Find a shortest path from F1 = {e ∈ E − F : F + e ∈ I1} to F2 = {e ∈ E − F : F + e ∈ I2}
and record the resulting set F ′ ∈ I1 ∩ I2 obtained by alternating F along this path.

• Demonstrate some F1 to F2 path such that alternating F along this path does not produce
a set F ′ ∈ I1 ∩ I2. Thus, we see it is important to alternate along shortest paths.

Note: Your example will have to use an item of F1 or F2 as an intermediate node on the
path. It is possible to come up with an example where augmenting along one such path that
excludes F1 or F2 as intermediate nodes also creates dependent sets.
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