
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 8 (Sep 19): Bin Packing
Lecturer: Zachary Friggstad Scribe: Yifeng Zhang

8.1 Bin Packing

Definition 1 In the Bin Packing problem, we are given a set of items I (which we identify with {1, . . . , n})
with sizes 0 ≤ si ≤ 1, i ∈ I. The goal is to pack I into the fewest bins possible so that the items in any bin have
total size ≤ 1. More explicitly, we should partition I into the fewest parts possible so that the sum of item sizes
in each part is at most 1.

In this lecture, we will see that there is no PTAS for this problem. However, we can get the next best thing:
for any constant ε > 0 there a polynomial time algorithm that uses at most (1 + ε) ·OPT + 1 bins.

Definition 2 For a subset B ⊆ I, we let SIZE(B) =
∑
i∈B si.

8.1.1 A Simple ∼ 2-Approximation

Algorithm 1 describes a greedy algorithm that tries to add the items one at a time. When adding an item, we
only create a new bin if the item does not fit in any of the currently used bins.

Algorithm 1 Bin Packing Heuristic

Input: A set of all items I, si ≤ 1,∀i ∈ I.
Output: A partition {Bi} of I where SIZE(Bi) ≤ 1 for each i.

b← 0
for each i ∈ I do

if si + SIZE(Bj) ≤ 1 for any 1 ≤ j ≤ b then
Bj ← Bj ∪ {i}

else
b← b+ 1
Bb ← {i} {Create a new bin}

end if
end for
return B1, . . . , Bb

Theorem 1 Algorithm 1 uses at most 2 ·OPT + 1 bins.

Proof. First, observe that OPT ≥ SIZE(I) because each bin in the optimum solution can hold a total size of
at most 1.

Let B1, . . . , Bb be the bins returned by the algorithm. We claim that SIZE(Bj) ≥ 1/2 for at least b− 1 of the
bins B1, . . . , Bb. Otherwise, we would have SIZE(Bj),SIZE(Bj′) < 1/2 for some two indices j < j′. Consider

8-1

8-2 Lecture 8: Bin Packing

the moment when bin Bj′ was created by the algorithm and say that item i was added to Bj′ at this time.
Since SIZE(Bj′) ≤ 1/2 at the end of the algorithm then si ≤ 1/2. But then si + SIZE(Bj) ≤ 1 so i could have
been added to Bj , contradicting the fact that the algorithm created Bj′ to accommodate i.

Finally, since all but one of the bins are at least half full we have (b − 1)/2 ≤ SIZE(I) ≤ OPT . Rearranging
shows b ≤ 2 ·OPT + 1.

The First-Fit Decreasing heuristic is essentially the same as Algorithm 1, except we consider the items in
decreasing order of size and if the item fits in one of the current bins, we place it in the bin Bj with least index
j. Johnson et al. show that this heuristic uses at most 11/9 ·OPT + 4 bins [J+74].

8.1.2 A Constant Hardness Lower Bound

Now we show that there is no PTAS for Bin Packing problem. Bin Packing problem is related to Partition
problem which is well-known to be NP-complete.

Definition 3 In the Partition problem, we are given positive integers a1,a2,...,an. The goal is to determine
if we can partition the set of indices {1, 2, ..., n} into sets S and T such that

∑
i∈S ai =

∑
i∈T ai.

Notice we can make this problem into Bin Packing problem by normalizing ai values so their sum is 2. The
items can be packed into two bins if and only if there is a solution to the original Partition instance. If there
is no solution to the Partition problem, then at least three bins are required. The following theorem follows
immediately from these facts.

Theorem 2 There is no c < 3
2 -approximation unless P = NP.

8.1.3 An Aysmptotic PTAS

Definition 4 An aysmptotic polynomial-time approximation scheme is a family of algorithms parameterized by
ε > 0 where, for each constant ε > 0, the algorithm finds a solution with cost at most (1 + ε) · OPT + c in
polynomial time where c is a constant independent of ε.

In this section, we present an asymptotic PTAS for bin packing with constant c = 1.

Theorem 3 For any constant 0 < ε ≤ 1 we can efficiently find a solution with at most (1 + ε)OPT + 1 bins in

time nO(1/ε2).

The idea is much like the PTAS for Minimizing Makespan on Identical Parallel Machines: ignore the
small items, approximate the instance with large items, and then greedily add small items to this solution. The
key difference is that we cannot naively scale the items down to solve via DP. If we did this and packed the bins
according to these scaled sizes, then returning the items to their original size might result in overpacked bins.

The approach taken here is a bit more subtle, instead we will scale item sizes up so that a packing under the
new sizes yields a packing under the old sizes. Of course, the concern here is that if we scale item sizes up then
the optimum solution value might go up. We will scale them carefully (i.e. using linear scaling described below)
to ensure the optimum solution value does not go up by much.

To begin, let Ilarge = {i ∈ I : si ≥ ε/2} and let Ismall = I − Ilarge.

Lecture 8: Bin Packing 8-3

Claim 1 Given a packing of Ilarge into b bins, we can efficiently find a packing of I using max{b, (1+ε)OPT+1}
bins.

Proof. Extending packing of the large items by adding the small items one at a time. Create a new bin only
if none of the current bins can accommodate the item. This can be viewed as running Algorithm 1 on items
Ismall, starting with the given packing of Ilarge (rather than an empty collection of bins).

Case 1: If no new bins were created, we use b bins.

Case 2: Otherwise, say b′ is the total number of bins used. Since si < ε/2 for i ∈ Ismall, we only create bins
if the other bins contains total size ≥ 1− ε/2. Therefore,

(b′ − 1)(1− ε/2) ≤ SIZE(I) ≤ OPT.

This is because all bins except, perhaps, the last bin we created will contain total size of at least 1− ε/2.
This shows

b′ ≤ OPT

1− ε
2

+ 1 ≤ (1 + ε)OPT + 1

where we have used 1/(1− ε/2) ≤ 1 + ε for any 0 < ε ≤ 1.

Linear Grouping: For a given value k (which we will specify soon), create a new instance I ′ as follows.
Order Ilarge in decreasing order of size so s1 ≥ s2 ≥ . . . ≥ sn`

where n` = |Ilarge|. Create groups G1 =
{s1, . . . , sk}, G2 = {sk+1, . . . , s2k}, G3 = {s2k+1, . . . , s3k}, . . . where all but, perhaps, the last group Gh have
size k and Gh has size at most k. The new instance I ′ consists of items {k + 1, k + 2, . . . , n`} = ∪hj=2Gh. For
an item i ∈ I ′ that is in group, say, Ga, set s′i = max{si : i ∈ Ga}. This process is called linear grouping.

The following is clear from this process.

Lemma 1 For each i ∈ I ′, si−k ≥ s′i ≥ si.

For clarity, we will let OPT (Ilarge) denote the optimum solution value for instance Ilarge, OPT (I) for the original
instance I and OPT (I ′) denote the optimum solution value for instance I ′. Clearly, OPT (Ilarge) ≤ OPT (I).

Lemma 2 For the instance I ′ with sizes s′i obtained from Ilarge using linear grouping, OPT (I ′) ≤ OPT (Ilarge) ≤
OPT (I ′) + k. Finally, given a packing of I ′ into b bins we can efficiently find a packing of Ilarge into at most
b+ k bins.

Proof. For the first inequality, consider an optimum solution for Ilarge. Pack each item i ∈ I ′ in the bin where
i− k ∈ Ilarge is packed. Since si−k ≥ s′i, this produces a feasible packing of I ′ using at most OPT (Ilarge) bins.

For the second part, consider a packing of I ′ into b bins. We obtain a packing of Ilarge by packing each of
items 1, . . . , k in their own bin and then packing the remaining items i ≥ k+ 1 in the same bin as item i ∈ I ′ is
packed. Since si ≤ s′i, this produces a feasible packing of Ilarge using at most b+ k bins.

To complete the description of the asymptotic PTAS for Bin Packing, we use the linear grouping scheme to
reduce to a problem we already know how to solve in polynomial time. To start, use the linear grouping scheme
with k := bε · SIZE(Ilarge)c.

8-4 Lecture 8: Bin Packing

We will assume nl > 2/ε2, as otherwise there are a constant number of items in Ilarge and such instances can
easily be solved optimally in constant time by brute force.

Let m be the number of distinct sizes in I ′. Note that m ≤ h − 1 where h is the number of groups created in
the linear grouping scheme. Therefore

m = h− 1
≤ n/k
= n/bε · SIZE(Ilarge)c
≤ n/b(ε2/2) · nc (each i ∈ Ilarge has si ≥ ε/2)
≤ 2n/((ε2/2) · n) (see below)
= 4/ε2.

The last inequality holds because n ≥ 2/ε2 and bαc ≥ α/2 for any α ≥ 1.

Say these distinct items items sizes are a1, a2, . . . , am. Any bin with items from I ′ can be identified with a tuple
of nonnegative integers (b1, b2, . . . , bm) where

∑m
j=1 bj · aj ≤ 1. Furthermore, since aj ≥ ε/2 for each j, then the

number of items in this bin is at most 2/ε, i.e.
∑m
j=1 bj ≤ 2/ε.

Let C be the set of all nonzero tuples (b1, . . . , bm) that represent a bin of size at most 1. Since 0 ≤ bj ≤ 2/ε the

the number of such tuples is at most (2/ε+ 1)m ≤ (3/ε)4/ε
2

.

For any tuples (n1, . . . , nm) of nonnegative integers let f(n1, . . . , nm) be the minimum number of bins required
to pack the set of items consisting of nj items of size aj . Since the number of configurations C is constant, then

the dynamic programming algorithm from the last lecture can be used to compute f(n1, . . . , nm) in nO(1/ε2)

time where nj is the number of items in I ′ having size aj (view bins ≡ machines and item sizes ≡ processing
times). Thus, we can compute OPT (I ′) in polynomial time. Of course, an optimum packing of I ′ can be
constructed through sufficient bookkeeping in the dynamic programming algorithm.

We summarize these argument below to complete the proof of our main statement.

Proof of Theorem 3. Compute an optimum packing of I ′ in time nO(1/ε2) using the dynamic programming
routine. By Lemma 2, we can transform this to a packing of Ilarge using at most b := OPT (Ilarge) + k ≤
OPT (I)+ε·OPT (I) bins. By Claim 1, greedily packing the items of Ismall into these bins, creating a new bin only
when an item does not fit in any of the current bins, finds a solution using at most max{b, (1+ε) ·OPT (I)+1} =
(1 + ε) ·OPT (I) + 1 bins.

This algorithm is a variant of the asymptotic PTAS for Bin Packing proposed by Fernandez de la Vega and
Lueker [FL81]. Their algorithm is more refined and has a much better running time bound of O(f(ε)+log(1/ε)·n)
where f(ε) is a constant that depends only on ε. In essence, for constant ε this is a linear-time algorithm.

The best approximation for Bin Packing is very recent. Rothvoss demonstrated an algorithm that uses at most
OPT + O(logOPT · log logOPT) bins [R13]. Currently, the best lower bounds do not rule out the possibility
of using only OPT + 1 bins.

The dynamic programming subroutine we used shows that if each item has size at least some constant and if
there are a constant number of different item sizes, then the problem can be solve exactly. Relaxing the second
constraint does not help (i.e. if each item is at least some constant but there can be many different item sizes)
as the problem remains NP-hard. However, another very recent algorithm of Goemans and Rothvoss shows how
to solve Bin Packing exactly if we are only guaranteed a constant number of different item sizes [GR14].

Lecture 8: Bin Packing 8-5

References

FL81 W. Fernandez de la Vega and G. L. Lueker, Bin packing can be solved within 1 + ε in linear time,
Combinatorica, 1:349–355, 1981.

GR14 M. X. Goemans and T. Rothvoss, Polynomiality for bin packing with a constant number of item types,
Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 830–839, 2014.

J+74 D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, Worst-case performance bounds
for simple one-dimensional packing algorithms, SIAM Journal on Computing, 1974.

R13 T. Rothvoss, Approximating bin packing within O(logOPT · log logOPT) bins, Proceedings of IEEE
Foundations of Computer Science, 20–29, 2013.

