
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 7 (Sep 17): PTAS &Min-Makespan on Identical Parallel Machines
Lecturer: Zachary Friggstad Scribe: Chris Martin

7.1 PTAS & FPTAS

Last lecture, we saw a (1− ε)-approximation for the Knapsack problem with running time O(n3/ε). There is
a special name for approximations that can get within any constant factor of the optimum in polynomial time.

Definition 1 A polynomial-time approximation scheme (or PTAS) is an approximation algorithm that
takes an additional parameter ε > 0, and finds a (1 ± ε)-approximate solution. The running time must be

polynomial for constant ε (this includes algorithms with running times like nO(1/ε) or even nO(21/ε)).

Definition 2 A fully polynomial-time approximation scheme (or FPTAS) is a PTAS with running
time polynomial in both n and ε. This includes algorithms with running time like O(n3/ε), for example, but not
nO(1/ε).

The algorithm for Knapsack we saw last lecture was an FPTAS. This lecture, we will see a PTAS for a new
problem. In the next assignment, you will prove there is no FPTAS for this problem unless P = NP.

7.2 Minimizing Makespan on Identical Parallel Machines

Consider a set of jobs J = {1, 2, . . . n} where each job needs integer processing time pj ≥ 0. Furthermore, we
have a set of identical machines K = {1, 2, . . . k} running in parallel. Assign a set of jobs to each machine such
that the maximum time any machine takes to complete its set of jobs (or its makespan) is minimized. More
formally, find Φ : J → K to minimize

max
1≤i≤k

∑
j∈Φ−1(i)

pj .

We say that the load of a machine in a given solution is the running time of all jobs assigned to that machine.

7.2.1 A Simple 2-Approximation

Algorithm 1 Simple Approximation

1: for all j ∈ J do
2: Assign j to the machine with least load so far.
3: end for

Theorem 1 Algorithm 1 is a 2-approximation.

7-1



7-2 Lecture 7: PTAS & Min-Makespan on Identical Parallel Machines

Proof. There are two crucial observations to be made:

1. pj ≤ OPT , and

2.
∑n
j=1

pj
k ≤ OPT (that is, the average machine load must be ≤ OPT ).

Say job j was assigned to machine i and was the last job to terminate overall in the generated schedule. The
load of i before being assigned j by the algorithm was then at most

∑n
j=1

pj
k ≤ OPT , since i was the machine

with minimum load at that step. Adding job j then increases the load to at most OPT + pj ≤ 2 ·OPT , which
is exactly the approximation ratio of the schedule since j is the last job.

This approximation appears in [G66]. The Williamson and Shmoys text shows that this greedy algorithm is in
fact a 4/3-approximation if the loop considers jobs in decreasing order of processing time.

7.2.2 A PTAS-Approximation

Theorem 2 There is a PTAS for Minimizing Makespan on Identical Parallel Machines

The algorithm uses the following as a subroutine.

Theorem 3 Given a value T ≥ 0, there is an nO(1/ε2)-time algorithm that either:

1. Returns a solution with makespan at most (1 + ε) ·max(T,OPT ), or

2. Determines there is no solution with makespan < T .

Furthermore, if T ≥ OPT then the algorithm is guaranteed to find a solution with makespan at most (1 + ε) ·
max(T,OPT ).

For now, assume Theorem 3 holds.

Proof of Theorem 2. Using the algorithm in Theorem 3, a binary search can be performed to find the smallest
T such that a solution with makespan at most (1 + ε) ·max(T,OPT ) exists. Let P denote

∑n
j=1 pj , the total

running time of all jobs. We know 0 ≤ OPT ≤ P and that OPT is an integer (since all pj are integers) so the
number of calls to the algorithm in Theorem 3 is O(logP ).

This T is at most OPT , so the makespan is at most (1 + ε) · OPT . The running time of this algorithm is

O(nO(1/ε2) · logP ) which is polynomial in the size of the input for constant values ε (at least log2 P bits of the
input are used just to represent the running times pj).

All that is left is to prove Theorem 3. The next claim simplifies things and shows we only have to focus on
scheduling the jobs with somewhat large processing time. For the rest of this discussion, let Jsmall = {j ∈ J :
pj ≤ ε · T} and Jlarge = J − Jsmall.

Claim 1 Given a solution of makespan (1 + ε) · T using only jobs in Jlarge, greedily placing the jobs in Jsmall
(as in Algorithm 1) results in makespan at most (1 + ε) ·max(T,OPT ).



Lecture 7: PTAS & Min-Makespan on Identical Parallel Machines 7-3

Proof of Claim 1. Say machine i has the highest load. If it has no jobs in Jsmall assigned to it, then its load
is at most (1 + ε) · T . Otherwise, say j̄ ∈ Jsmall was added last. The load is then at most

pj̄ +
1

k

n∑
j=1

pj ≤ ε · T +OPT

≤ (1 + ε) ·max(T,OPT ).

Proof of Theorem 3. If pj > T for some j, then clearly there is no solution with makespan at most T . So,
assume all processing times are at most T .

We will use dynamic programming to find a solution with makespan (1 + ε) · T over Jlarge (or else determine
that makespan ≤ T solution exists).

Let b be the smallest integer such that 1/b ≤ ε. Note that for ε ≤ 1 we have b ≥ 2/ε (and if ε > 1 we may as
well just use the 2-approximation from Section 7.2.1).

Define new processing times p′j = bpjb
2

T c ·
T
b2 (i.e. scale the pj values to integer multiples of T

b2 ). It is then the

case that p′j ≤ pj ≤ p′j + T
b2 , and further, p′j = m · Tb2 for some m ∈ {b, b+ 1, . . . b2} (m ≥ b since pj ≥ T

b by the
definition of Jlarge).

For the DP, define a configuration as a tuple (ab, ab+1, . . . ab2) of nonnegative integers such that
∑b2

i=b ai·i·
T
b2 ≤ T .

In such a configuration, ai represents the number of jobs with running time i · T/b2. Let C(T ) be the set of all
configurations. Thus, there is a clear correspondence between configurations and assignments of jobs to a given
machine with makespan (under processing times p′) at most T .

The DP table is defined as follows. Given integers nb, nb+1, . . . nb2 ≥ 0 where ni indicates the number of jobs
with processing time i · Tb2 that need to be run, let f(nb, nb+1, . . . nb2) be the minimum number of machines
required to schedule all jobs with makespan at most T . Stated as a recurrence,

f(0, 0, . . . 0) = 0

f(nb, nb+1, . . . nb2) = 1 + min
{(ab,...ab2 )∈C(T ):∀i,ai≤ni}

f(nb − ab, . . . nb2 − ab2)

Note that ∀i, ni ≤ n, so the number of table entries and unique configurations (ab, . . . ab2) in the DP are both

bounded by nb
2

. Thus, filling the DP table takes at most nO(b2) time.

Using this DP, if nb, . . . nb2 is the original configuration tuple for all jobs ∈ Jlarge, then if f(nb, . . . nb2) ≤ k,
output yes (the actual assignment can be constructed using standard techniques for recovering a solution from a
DP table). Otherwise output no. Note that each machine is assigned at most b jobs since p′j ≥ T

b for ∀j ∈ Jlarge,
and the p′-makespan is ≤ T . Therefore, the true makespan is

≤ p′-makespan + b · max
j∈Jlarge

(pj − p′j)

≤ T + b · T
b2

= (1 + ε) · T.

This PTAS appeared in [HS87].



7-4 Lecture 7: PTAS & Min-Makespan on Identical Parallel Machines

References

G66 R. L. Graham, Bounds for certain multiprocessing anomalies. Bell Systems Technical Journal, 45:1563–
1581, 1966.

HS87 D. S. Hochbaum and D. B. Shmoys, Using dual approximation algorithms for scheduling problems:
theoretical and practical results, Journal of the ACM, 34:144–162, 1987.


