
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 22 (Oct 27): Colouring 3-Colourable Graphs
Lecturer: Zachary Friggstad Scribe: Bradley Hauer

In this lecture, we consider the following problem. Suppose we have a graph G = (V,E) that we know is
3-colourable but we are not given the colouring. The goal is to colour G with the fewest possible colours.

It may come as a surprise that the state of the art in this topic seems quite bad. The best algorithm will colour
G with O(nδ) colours for some constant (see the discussion below). We will see how to colour G using at most
O(n0.387) colours.

22.1 Using O(
√
n) Colours

We begin with some definitions.

Definition 1 For every vertex v of a graph G = (V,E), let NG(v) = {u ∈ V : (u, v) ∈ E} be the neighbourhood
of v.

Definition 2 For V ′ ⊆ V , G[V ′] is the graph with nodes V ′ and edges {(i, j) ∈ E : i, j ∈ V ′}.

The following lemma describes one of the key structures of 3-colourable graphs we will exploit.

Lemma 1 Let G = (V,E) be a 3-colourable graph. For every v ∈ V , the graph G[N(v)] is 2-colourable.

Proof. Consider a colouring χ : V → {1, 2, 3} of a graph G. For every u ∈ NG(v) we have χ(u) 6= χ(v), so
G[N(v)] can be coloured with the two colours {1, 2, 3} − {χ(v)}.

This will be very helpful because, as you will recall, there is a simple linear-time algorithm that either 2-colours
a graph or else determines the graph is not 2-colourable.

The colouring algorithms we cover in this lecture come in two phases. The first uses some colours to reduce the
degree of uncoloured nodes to some quantity ∆ and the second will colour the degree-∆ bounded graph.

Theorem 1 Given a 3-colourable graph and any integer ∆ ≥ 1, we can efficiently colour a set of nodes S using
≤ 3 · n∆ colours such that the graph of uncoloured nodes G[V − S] has degree at most ∆.

Proof. Algorithm 1 described below accomplishes this. Each iteration uses 3 new colours. Since each iteration
removes at least ∆ + 2 vertices from G (namely, i and NG[V−S](i)) then there are at most n

∆+2 ≤
n
∆ iterations.

Overall, the algorithm uses at most 3 n∆ colours.

When the while loop terminates, the graph of uncoloured nodes G[V − S] has degree at most ∆.

Next we describe a simple algorithm to colour a degree-bounded graph.

Theorem 2 Any graph with degree ≤ ∆ can be efficiently coloured with ≤ ∆ + 1 colours.

22-1

22-2 Lecture 22: Colouring 3-Colourable Graphs

Algorithm 1

S ← ∅
while G[V − S] has a vertex i with |NG[V−S](i)| ≥ ∆ + 1 do

Use 3 new colours to colour i and NG[V−S](i). (c.f. Lemma 1)
S ← NG[V−S](i) ∪ {i}

end while

Proof. Process i ∈ V in any order. Colour i with any of the ∆ + 1 colours not yet used by a node in NG(i).

These two algorithms are combined to colour G with
√
n colours.

Algorithm 2 “Final” Algorithm

∆←
√
n

Colour some nodes with ≤ 3 · n∆ = 3 ·
√
n colours s.t. the degree of the uncoloured nodes is ≤

√
n

Colour the rest with ∆ + 1 =
√
n+ 1 colours

Note that this algorithm is guaranteed to succeed if G is 3-colourable. It would also succeed if G[N(i)] was
2-colourable for every i ∈ V (even if G itself was not 3-colourable).

If we are given a graph G without even the 3-colourability guarantee then we can still either determine that G
is not 3-colourable or else colour G with O(

√
n) colours. That is, first test to see if G[N(i)] was 2-colourable

for every i ∈ V before running Algorithm 2. Note that this does not decide the 3-colouring problem because it
may still colour a non-3-colourable graph with O(

√
n) colours.

22.2 A Better Algorithm

Theorem 2 works for any graph, but we can use even fewer colours in a degree-bounded, 3-colourable graph G.

Theorem 3 Given a 3-colourable graph G with degree ≤ ∆, there is a randomized polynomial time algorithm
that colours G with at most 4 ·∆log3 2 · log2 n colours.

By “randomized polynomial time”, we mean it always uses as many colours as stated and the running time is
polynomial with high probability.

Before proving this, let us see how it leads to a better colouring algorithm for arbitrary 3-colourable graphs.

Theorem 4 There is a randomized polynomial-time algorithm that colours a graph G with O(nlog6 2 · log n) ≈
O(n0.387) colours.

Proof. Replace the third line in Algorithm 2, above, with the algorithm described in Theorem 3. Next, select
a value ∆ that minimizes the number of colours used between the two parts. For simplicity, we select ∆ so that
n/∆ = ∆log3 2 or n = ∆log3 6. That is, we use ∆ = nlog6 3.

The number of colours used in the first step is at most 3 n∆ = 3n1−log6 3 = 3 ·nlog6 2. The number of colours used
in the second step is bounded by

4 ·∆log3 2 · log2 n = 4 · nlog6 3·log3 2 · log2 n = 4 · nlog6 2 log2 n.

Lecture 22: Colouring 3-Colourable Graphs 22-3

The proof of Theorem 3 follows from iteration the following process log2 n times. Since the number of uncoloured
nodes decreases by a factor of 2, this will colour all nodes using at most 4 ·∆log3 2 · log2 n colours.

Theorem 5 There is a randomized polynomial time algorithm that colours at least n/2 nodes with at most
4 ·∆log3 2 colours.

Proof. We use semidefinite programming. For each i ∈ V , we will have a vector vi ∈ Rn where n = |V |.

The feasible solutions are those where, for each (i, j) ∈ E, vi ◦ vj = −1/2. There is nothing in particular we
want to minimize here, we just want a feasible solution to use in our algorithm. If you want to implement this
using an SDP solver, you can simply have it minimize the constant 0 function.

Lemma 2 The SDP has a feasible solution if G is 3-colourable.

Proof. Say the colours are 0, 1, and 2, and α(i) ∈ {0, 1, 2} is the colour of i ∈ V . Let vi = (cos(α(i) ·
2π
3), sin(α(i) · 2π

3), 0, . . . , 0) for every i ∈ V . So vi ◦ vj = cos(2π/3) = − 1
2 for any edge (i, j) ∈ E because

α(i) 6= α(j).

Set t = 2+log3 ∆ and uniformly and independently sample t random unit vectors r1, . . . , rt ∈ Rn. For 1 ≤ j ≤ t
let

Sj = {i ∈ V : rj ◦ vi ≥ 0}.

For each t-dimensional boolean vector (b1, . . . , bt) = b, let Sb be the nodes i such that, for each 1 ≤ j ≤ t, i ∈ Sj
iff bj = 1. Finally we prune these sets a bit: while some (i, i′) ∈ E has i, i′ ∈ Sb for some b, discard both i and
i′ from Sb.

Note that assigning colour b to each i ∈ Sb is a valid colouring of the nodes that were not discarded simply
because no edge has both endpoints in the same Sb set.

Claim 1

Pr

∑
b

|Sb| ≥
n

2

 ≥ 1

2

We prove this in a few steps. First, we show the probability that an edge (i, i′) has both i, i′ in the same set Sb is
small. Let θ = 2π/3 denote the angle between vi and vi′ . Recall from previous lectures that for a random unit
vector r we have that exactly one of r◦vi and r◦vi′ is negative is θ/π = 2/3. That is, Pr[Sj ∩{i, i′} = 1] = 2/3
from which we get

Pr[i, i′ in same Sb]

=

t∏
j=1

Pr[|Sj ∩ {i, i′}| 6= 1] (because the vectors rj are sampled independently)

= (1/3)t

We use this to bound the probability that i is discarded.

Pr[i, i′ in same Sb for some neighbour i′ of i] ≤
∑

i′∈NG(i)

Pr[(i, i′) in same Sb]

≤ ∆ ·
(

1
3

)t
= ∆/9 · 3− log3 ∆

= 1/9

22-4 Lecture 22: Colouring 3-Colourable Graphs

The first inequality is by the union bound and the second is by the fact that every vertex has at most ∆
neighbours. In other words, we have

Pr[i not coloured] ≤ Pr[i, i′ in same Sb for some neighbour i′ of i] ≤ 1/9.

We conclude by noting that E[#i ∈ V not coloured] ≤ n/9. So:

Pr[#i ∈ V not coloured ≤ n/2] ≤ E[# not coloured]

n/2
≤ 2

9
.

The first inequality is justified by Markov’s inequality. So, we will likely get the desired colouring from running
this algorithm a few times; better still, we can easily check when we have succeeded in colouring at least n/2
nodes so we know exactly when to stop.

To be precise, the probability that we have to iterate this process more than n times is at most (2/9)n, so with
extremely high probability the algorithm runs in polynomial time.

22.3 Discussion

The algorithm that uses O(
√
n) colours is an old algorithm by Wigderson [W83]. The improved algorithm

that uses O(n0.387) was given by Karger, Motwani, and Sudan [KMS94]. They actually obtain an even better
algorithm that uses ∼ O(n1/4), which is also described in the Williamson and Shmoys text. The best algorithm
so far is by Kawarabayashi and Thorup and uses O(n0.19996) colours [KT14]. Obtaining an algorithm that
uses O(logc n) colours for some constant c or even O(nε) colours for any constant ε > 0 is an interesting and
important open problem.

From the hardness perspective, unless P = NP any efficient algorithm that colours a 3-colourable graph must use
at least 6 colours [GK04,KLS00]. Under some still-unresolved complexity-theoretic conjecture (that is somewhat
related to the Unique Games Conjecture), it is hard to colour a 3-colourable graph using any constant number
of colours [DMR09].

References

DMR09 I. Dinur, E. Mossel, O. Regev, Conditional hardness for approximate coloring, SIAM Journal on Comput-
ing, 39(3):843–873, 2009.

GK04 V. Guruswami and S. Khanna, On the hardness of 4-coloring a 3-colorable graph,

KMS94 D. R. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite programming,
Journal of the ACM, 45(2):246–265, 1998.

GW05 K. Kawarabayashi and M. Thorup, Coloring 3-colorable graphs with o(n1/5) colors, In Proceedings of
Symposium on Theoretical Aspects of Computer Science, 2014.

KLS00 S. Khanna, N. Linial, and S. Safra, On the hardness of approximating the chromatic number, Combina-
torica, 20(3):393–415, 2000.

W83 A. Wigderson, Improving the performance guarantee for graph coloring, Journal of the ACM, 30(4):729–
735, 1983.

