
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 21 (Oct. 24): Max Cut SDP Gap and Max 2-SAT
Lecturer: Zachary Friggstad Scribe: Chris Martin

21.1 Near-Tight Analysis of the Max Cut SDP

Recall the Max Cut problem. Given an undirected graph G = (V,E) with edge weights w(e), e ∈ E, find
S ⊆ V that maximizes

∑
e∈δ(S) w(e). The following strict quadratic program was presented for this problem in

the previous lecture. For each i ∈ V , we use the interpretation that vi = 1 means i ∈ S and vi = −1 means
i 6∈ S.

maximize:
∑

(i,j)∈E

w(i, j) · 1− vivj
2

(MAXCUT-QP)

subject to: vivi = 1, ∀i ∈ V (21.1)

We relaxed this to an SDP by replacing each vi with a vector vi ∈ Rn and replacing the multiplication of
variables with the dot product ◦.

maximize:
∑

(i,j)∈E

w(i, j) · 1− vi ◦ vj
2

(MAXCUT-SDP)

subject to: vi ◦ vi = 1, ∀i ∈ V (21.2)

We saw a simple randomized rounding algorithm that rounds an optimal solution to (MAXCUT-SDP) to an
integer solution with expected value at least α ·OPTSDP where

α := min
0≤θ≤2π

2θ

π(1− cos(θ)
≥ 0.87856.

There is a simple example for Max Cut that shows our analysis is nearly tight.

Consider G = C5, the cycle on 5 nodes {0, 1, 2, 3, 4}, with all edge weights being 1. The optimum solution is 4
with an optimum cut being, say, S = {1, 3} with δ(S) = {(0, 1), (1, 2), (2, 3), (3, 4)} (we can do no better because
C5 is not bipartite). Next we define a feasible SDP solution with value greater than 4.

Let θ = 4π/5. For 0 ≤ i ≤ 4, let vi = (cos(iθ), sin(iθ), 0, 0, 0). Note that vi ◦ vi = 1 for all i, since
cos2(iθ) + sin2(iθ) = 1. So, this is a feasible solution to MAXCUT-SDP. The angle between any two nodes
corresponding to an edge (i, i+ 1) is θ, so vi ◦ vi+1 = ||vi|| · ||vi+1|| · cos(θ) = cos(θ). Thus,

OPTSDP ≥
4∑
i=0

1− cos(θ)

2

=
5

2
·
(

1− cos
(4π

5

))
≥ 4.52254.

21-1

21-2 Lecture 21: Max Cut SDP Gap and Max 2-SAT

Therefore,
OPT

OPTSDP
≤ 4

5
2 ·
(

1− cos
(

4π
5

)) ≤ 0.88445

which is very close to α. So, we know that our analysis of the integrality gap is nearly tight.

In fact, our initial integrality gap analysis is tight. There are more sophisticated examples showing that for any
constant c > α that the integrality gap is at most c [FS02].

21.2 Max 2-SAT

The Max 2-SAT problem is as follows. Given 2-CNF clauses C1, · · · , Cm over variables x1, · · ·xn, and weights
for each clause w(C), choose a boolean assignment of the variables that maximizes the total weight of satisfied
clauses. An interesting aspect of this problem is that there is a polynomial-time algorithm that determines if
all clauses can be satisfied [APT79]. However, if an instance is not satisfiable then the algorithm in [APT79]
does not give us much of an idea on the maximum number that can be satisfied; this remains NP-hard.

Converting this problem into a strict quadratic program takes a bit of insight. For example, we cannot simply
associate a variable vi for each xi and say vi = 1 corresponds to xi = True. This is because a quadratic term
of the form vi · vj cannot distinguish between the value vi · vj or (−vi) · (−vj). This was not a problem with
Max Cut because, intuitively, negating all variables simply swapped the solution S to V − S (which cut the
same edges).

We will add a special variable which we call v0 and define a truth assignment relative to v0. That is, in any
setting of the values v0, v1, . . . , vn ∈ {−1,+1} we will set xi = True iff v0 = vi. Thus, negating all vi variables
does not change the associated truth assignment.

With the understanding that each vi will take {−1,+1} values, we can model the clause (x1 ∨ x2) with the
following expression:

1− 1− v0v1
2

· 1 + v0v2
2

(21.3)

Note that this is 1 iff (v0 = v1 ∨ v0 6= v2), as desired. Expanding this gives the following:

= 1− 1

4
(1− v0v1 + v0v2 − v20v1v2) (21.4)

= 1− 1

4
(1− v0v1 + v0v2 − v1v2) (21.5)

=
1

4
(1− v0v1) +

1

4
(1 + v0v2) +

1

4
(1− v1v2). (21.6)

Note that (21.5) holds because v0 ∈ {1,−1}. Summing (21.6) over all clauses (some of the ± signs in front of
the quadratic terms may differ, depending on whether the literals in the clause appear positively or negatively)
with weights multiplied through gives the weight of satisfied clauses being expressed by∑

0≤i<j≤n

aij(1 + vivj) + bij(1− vivj)

where the values aij , bij are constants ≥ 0. This will become our objective function for the quadratic program.

maximize:
∑

0≤i<j≤n

aij(1 + vivj) + bij(1− vivj) (MAX-2SAT-QP)

subject to: vivi = 1, 0 ≤ i ≤ n (21.7)

Lecture 21: Max Cut SDP Gap and Max 2-SAT 21-3

As in the SDP for Max Cut, we will replace the variables vi with vectors vi ∈ Rn+1 and replace the products
with vector dot products to get the following SDP.

maximize:
∑

0≤i<j≤n

aij(1 + vi ◦ vj) + bij(1− vi ◦ vj) (MAX-2SAT-SDP)

subject to: vi ◦ vi = 1, 0 ≤ i ≤ n (21.8)

We round MAX-2SAT-SDP using an algorithm similar to the one presented in the previous lecture for Max
Cut.

1. Solve MAX-2SAT-SDP to get vectors v∗i , 0 ≤ i ≤ n.

2. Let r ∈ Rn+1 be a random unit vector.

3. Define values yi, 0 ≤ i ≤ n by

yi =

{
1 if v∗i ◦ r ≥ 0
−1 if v∗i ◦ r < 0

4. For each 1 ≤ i ≤ n, set

xi :=

{
True if y0 · yi = 1

False if y0 · yi = −1

Claim 1 The expected weight of satisfied clauses is α ·OPTSDP .

Proof. A clause of the form, say, xi∨xj is satisfied if and only if 1
4 (1 +y0 ·yi) + 1

4 (1−y0 ·yj) + 1
4 (1−yi ·yj) = 1

(otherwise the expression is 0) where the yi are the values constructed in the algorithm. Thus, by how we
collected the quadratic terms we have that the value of the truth assignment is exactly∑

0≤i<j≤n

aij(1 + yi · yj) + bij(1− yi · yj).

Let θij be the angle between v∗i and v∗j . From the Max Cut analysis, we know Pr[yi · yj = −1] =
θij
π . This

also shows Pr[yi · yj = 1] = 1− θij
π . Therefore,

E[yi · yj] = Pr[yi · yj = 1] · 1 + Pr[yi · yj = −1] · (−1) =

(
1− θij

π

)
· 1 +

(
θij
π

)
· (−1) = 1− 2θij

π
.

By linearity of expectation, the expected weight of satisfied clauses is exactly

E

 ∑
0≤i<j≤n

aij · (1 + yi · yj) + bij · (1− yi · yj)


=

∑
0≤i<j≤n

aij(1 + E[yi · yj]) + bij(1− E[yi · yj])

=
∑

0≤i<j≤n

aij ·
(

2− 2θij
π

)
+ bij ·

2θij
π

=
∑

0≤i<j≤n

2 · aij ·
(

1− θij
π

)
+ 2 · bij ·

θij
π

(21.9)

21-4 Lecture 21: Max Cut SDP Gap and Max 2-SAT

Recall that for any θ ∈ [0, π] we have
θ

π
≥ α · 1− cos(θ)

2

where α > 0.87856 is the constant in the Max Cut analysis. One can also show that for θ ∈ [0, π] we also have

1− θ

π
≥ α · 1 + cos(θ)

2
.

Using these bounds, the fact that cos(θij) = v∗i ◦ v∗j , and that all aij and bij coefficients are nonnegative we
conclude by bounding expression (21.9) as follows:

∑
0≤i<j≤n

2 · aij ·
(

1− θij
π

)
+ 2 · bij ·

θij
π
≥

∑
0≤i<j≤n

aij · α · (1 + v∗i ◦ v∗j) + bij · α · (1− v∗i ◦ v∗j) = α ·OPTSDP.

21.3 Discussion

One can better with Max-2SAT. There is a 0.94-approximation via SDP techniques [LLZ02] and this is nearly
tight. Under the Unique Games Conjecture, there is no 0.943-approximation [K+07]. Assuming only P 6= NP,
there is no 21/22 ≈ 0.954 approximation for Max-2SAT [H01].

In general, SDPs perform very well for Constraint Satisfiaction Problems where each clause is over only two
variables (i.e. a 2-CSP) and where the variables take values from a constant-size domain. For example, Max-
2SAT and Max Cut are two such problems. Another is the the 3-colouring variant where we must colour each
vertex one of three colours and the goal is to maximize the number of edges that whose endpoints are coloured
differently. This is a 2-CSP with domain size 3. A random colouring satisfies each constraint with probability
2/3, leading to a randomized 2/3-approximation. However, SDP-based techniques approximate this problem
within a constant better than 2/3. In general, any 2-CSP over a constant-size domain can be approximated
better than the random assignment using SDPs [H08].

Finally, under the Unique Games Conjecture (UGC) we have a complete characterization of constraint satisfac-
tion problems of constant constraint size over constant domains (including problems like Max-3SAT). Namely,
Raghavendra describes an SDP relaxation for such CSPs and proves, in some sense, that the if integrality gap
for this relaxation is γ then it is UGC-hard to approximate the problem within any constant better than γ
[R08]. He also describes an algorithm that rounds the SDP and obtains an approximation guarantee essentially
equal to the integrality gap γ.

References

APT79 B. Aspvall, M. Plass and R. Tarjan, A linear-time algorithm for testing the truth of certain quantified
boolean formulas, Information Processing Letters 8(3), 121–123, 1979.

FS02 U. Feige and G. Schechtman, On the optimality of the random hyperplane rounding technique for MAX-
CUT, Random Structures and Algorithms, 20:403–440, 2002.

H01 J. H̊astad, Some optimal inapproximability results, Journal of the ACM, 48:798–869, 2001.

H08 J. H̊astad, Every 2-CSP allows nontrivial approximation, Computational Complexity, 17(4):549–566, 2008.

Lecture 21: Max Cut SDP Gap and Max 2-SAT 21-5

K+07 S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, Optimal inapproximability results for MAX-CUT and
Other 2-Variable CSPs?, SIAM Journal on Computing, 37(1):319–357, 2007.

LLZ02 M. Lewin, D. Livnat, and U. Zwick, Improved rounding techniques for the MAX-2SAT and MAX-DICUT
problems. In Proceedings of IPCO, 2002.

R08 P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, In Proceedings of
STOC, 2008.

