
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 20 (Oct 22): Semidefinite Programming and Max Cut
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

20.1 Semidefinite Programming

Semidefinite programming is a generalization of linear programming that we can still effectively solve in poly-
nomial time. First, we review a key concept.

Definition 1 A matrix X ∈ Rn×n is positive semidefinite if for every vector v ∈ Rn we have vT ·X ·v ≥ 0.
We write X � 0 to indicate X is positive semidefinite.

For symmetric X � 0, there are many equivalent ways to define this. We mention just a couple below.

Theorem 1 Let X ∈ Rn×n be a symmetric matrix. Then the following statements are equivalent:

• X � 0 (according to the above definition).

• Every eigenvalue λ of X is satisfies λ ≥ 0 (recall any symmetric matrix has only real-valued eigenvalues).

• There are vectors v1, . . . ,vn ∈ Rn that satisfy vi ◦ vj = Xi,j where ◦ denotes the dot product.

Finally, for two matrices A,B ∈ Rn×n, the Schur product of A and B is A ◦B =
∑
i,j Ai,j ·Bi,j .

A semidefinite program (SDP) consists of a dimension n, matrices C,A1, . . . ,Ak ∈ Rn×n and values b1, . . . , bk ∈
R. It is the mathematical program

minimize : C ◦X
subject to : Ai ◦X = bi for each 1 ≤ i ≤ k

X = XT

X � 0

(SDP)

As with linear programming, we can instead maximize the objective function and/or have linear inequalities
like Ai ◦X ≤ bi. Of course, for the sake of computability we assume all C,Ai, bi values are rational. Similar
to how we denote the optimal value of an LP, we will use OPTSDP to denote the optimum solution value of a
given semidefinite program.

One barrier to solving SDPs exactly is that even if the input data consists only of integers it might be that the
unique optimum is in fact irrational. An example of this is in the next lecture (the integrality gap example for
Max Cut).

The following summarizes what we can expect from polynomial-time solvers for semidefinite programming. We
let ∆ denote the “size” of the input: the number of bits used to record C and each of the Ai and bi constraints.

Theorem 2 Under certain “niceness” assumptions (that will be satisfied by the SDPs in this course), for any
ε > 0 we can find a feasible solution X in poly

(
∆, log 1

ε

)
time that satisfies C ◦X ≤ OPTSDP + ε. Furthermore,

we can also find vectors v1, . . . ,vn in poly
(
∆, log 1

ε

)
time where |vi ◦ vj −Xi,j | ≤ ε.
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From now on, we will sweep this ε under the rug and simply assume that we can solve the SDPs optimally and
obtain an exact vector decomposition.

20.2 Quadratic Programming and Vector Programming

A (Strict) Quadratic Program is presented much like a linear program, except that each term is either a constant
or the product of two variables. Generally, it is presented as follows where v1, . . . , vn are the R-valued variables:

minimize :
∑
i,j ci,j · vi · vj

subjectto :
∑
i,j a

k
i,j · vi · vj = bk for each k

vi ∈ R for each i

(QP)

Here, k indexes the various constraints.

Solving quadratic programs, even up to just a constant ε > 0, is NP-hard. However, if we substitute each
real-valued variable vi with a vector-valued variable vi ∈ Rn and the multiplication of variables with the dot
product, we obtain a Vector Programming relaxation.

minimize :
∑
i,j ci,j · vi ◦ vj

subjectto :
∑
i,j a

k
i,j · vi ◦ vj = bk for each k

vi ∈ Rn for each i

(VP)

The claim is that this is just another view of semidefinite programming. For example, we could replace each
vi ◦ vj with the variable Xi,j and then assert that X = XT and X � 0 to get an SDP. This process reverses,
given an SDP we can replace each occurrence of Xi,j with vi ◦ vj . Given the equivalence (for symmetric X) of
X � 0 and X having a vector decomposition, these operations produce equivalent mathematical programs.

The point is, we often write a semidefinite program as a vector program with the understanding that it can be
solved using algorithms for solving SDPs. In this way, we can regard SDPs as being useful for finding efficiently
solvable relaxations of quadratic programs.

20.3 Max Cut

In the Max Cut problem, we have a graph G = (V,E) with edge weights w(e) ≥ 0, e ∈ E. The goal is to find
a maximum weight cut: a set S ⊆ V with maximum possible

∑
(i,j)∈δ(S) w(i, j).

An easy extension of a problem in Assignment 0 shows that it is always possible to find a cut with at least half
of the total edge weight. In fact, adding each v ∈ V to S independently and uniformly at random results in the
expected weight of δ(S) being exactly half of the total edge weight. These are 1/2-approximations. Here, we
will see a much better approximation based on semidefinite programming.

We start with a quadratic program.

maximize :
∑

(i,j)∈E
w(i, j) · 1− vi · vj

2

subject to : vi · vi = 1 for each i ∈ V
vi ∈ R for each i ∈ V
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Here, we let vi = 1 indicate i ∈ S and vi = −1 indicate i 6∈ S. This way, in any feasible solution the term
1−vi·vj

2 in the objective function is 1 if i and j lie on different sides of the cut and is 0 if i and j lie on the same
side of the cut.

The vector programming/SDP relaxation is

maximize :
∑

(i,j)∈E
w(i, j) · 1− vi · vj

2

subject to : vi · vi = 1 for each i ∈ V
vi ∈ Rn for each i ∈ V

(SDP-Max-Cut)

Let α := min
0≤θ≤π

2

π
· θ

1− cos(θ)
> 0.87856. The numerical estimate can be obtained by asking Wolfram Alpha :)

minimize 2/Pi * t/(1-cos(t)) for t in [0,pi]

Theorem 3 The integrality gap of (SDP-Max-Cut) is at least α. Moreover, there is a polynomial-time
randomized algorithm that finds a cut with expected weight at least α ·OPTSDP.

Proof. Let v∗i denote the vectors in an optimal solution to (SDP-Max-Cut). Sample a random unit vector r
(i.e. r is uniformly chosen from the set {x ∈ Rn : ||x||2 = 1}). See the comments at the end of this set of notes
for some details on how to do this.

Let S = {i ∈ V : r ◦ v ≥ 0}. We show Pr[(i, j) ∈ δ(S)] ≥ α · 1−v
∗
i ◦v∗

j

2 . As usual, this implies by linearity of
expectation that the expected weight of δ(S) is at least α ·OPTSDP.

If v∗i and v∗j lie on a line through the origin then v∗i ◦ v∗j = ±1 because they are unit vectors. In this case,

Pr[(i, j) ∈ δ(S)] =
1−v∗

i ◦v∗
j

2 . So, suppose they do not line on a line and consider the 2-dimensional plane that
passes through v∗i , v∗j and the origin.

We claim that Pr[(i, j) ∈ δ(S)] remains unchanged whether we sample r uniformly at random from all unit
vectors in Rn or uniformly at random from all unit vectors on this plane. Intuitively, there is no reason that the
uniform distribution over unit vectors in Rn should have any bias to some particular region on the unit circle
in this plane. This can be proven formally, but we skip it.

So, we must show that if v∗i ,v
∗
j lie on the plane, then Pr[(i, j) ∈ δ(S)] ≥ α 1−v∗

i ◦v∗
j

2 when we sample r uniformly
at random from the unit circle. Let θi,j denote the angle between v∗i and v∗j . Then v∗i ◦ r and v∗j ◦ r have
different signs if and only if the line η that is normal to r passes between v∗i and v∗j . Because r is uniformly
distributed over the circle, this happens with probability at exactly θi,j/π (see Figure 20.1).

We have shown Pr[(i, j) ∈ δ(S)] = θi,j/π. By definition of α, this is at least (1− cos(θi,j))/2. We conclude by
recalling that for any two vectors u,v that u ◦ v = ||u|| · ||v|| · cos(θ). The constraints of (SDP-Max-Cut)
ensure the vectors v∗i and v∗j are unit vectors. Thus,

Pr[(i, j) ∈ δ(S)] ≥ α · 1− cos(θi,j)

2
= α ·

1− v∗i ◦ v∗j
2

.

20.4 Sampling A Random Vector

The rounding algorithm for Max Cut required us to sample a random unit vector r. We can do this simply by
sampling from the normal distribution N (0, 1). That is, for each coordinate 1 ≤ i ≤ n, first sample xi ∼ N (0, 1)
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r

Figure 20.1: Illustration of a vector r such that v∗j ◦ r > 0 and v∗i ◦ r < 0. The dashed line is r’s normal line,
note that it passes between v∗i and v∗j .

where the distribution N (0, 1) is given by the probability density function p(x) = 1√
2π
e−x

2/2. This is done

independently for each coordinate. Let x = (x1, . . . , xn) be this sampled vector. Return r = x/||x||.

First we examine the probability density function for the random vector (x1, . . . , xn). Since the coordinates
were sampled independently, the density of a particular vector (x1, . . . , xn) is precisely

n∏
i=1

1√
2π
e−x

2
i /2 = (2π)−n/2e−

∑n
i=1 x

2
i /2 = (2π)−n/2e−||x||/2.

In particular, any two vectors with the same length have the same density. So for every d ≥ 0 the conditional
distribution over x with ||x|| = d is the uniform distribution. Therefore, the distribution over unit the vectors
r is also uniform.

Sampling from N (0, 1) is a bit outside of the scope of this course, but it can be done approximately well
using independent, unbiased random bits. At the very least, even knowing that the expected weight is at least
α · OPTSDP when r is sampled uniformly from the set of unit vectors is enough to prove that the integrality
gap is at least α.

20.5 Discussion

This groundbreaking algorithm was discovered by Goemans and Williamson [GW95]. Surprisingly, there is
evidence suggesting that this is the best possible approximation. That is, if the Unique Games Conjecture holds
(we will discuss this later) there is no c-approximation for Max Cut for any constant c > α (where α ≈ 0.87856
is the constant defined above) [K+07]. Under the more widely believed conjecture that P 6= NP, there is no
16/17 ≈ 0.941176 approximation for Max Cut [H01].
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