CMPUT 675: Approximation Algorithms Fall 2014

Lecture 18 (Oct 17): STEINER FOREST and k-MEDIAN
Lecturer: Zachary Friggstad Scribe: Nikos Fasarakis-Hilliard

18.1 Steiner Forest Generalizations

We continue our discussion of STEINER FOREST in a more general context.

Let f:2Y — {0,1} be a function that satisfies the following properties:

1 f(0) = f(V)=0.
2. f(S)=f(V—-25), forall ) CSC V.

3. f(SUT) <max{f(S), f(T)} for any two disjoint sets S,T C V.

Call such a function proper. For example, the function f(.) from last lecture for the STEINER FOREST problem
is easily seen to be proper. So is the function f with f(S) = |S| (mod 2) when |V] is even. More generally, if b
is an integer such that |V is a multiple of b, then the function f with f(S) =1 if and only if b does not divide
|S| is proper.

In Lecture 16, we made the following claim (using the notation from the algorithm description in Lecture 16).

Claim 1 Consider any iteration i and let F' be the final set of returned edges. We have Y g e [FNS(S)| < 2[Cil,
i.e. the average degree of the “active” sets in iteration i is at most 2.

In fact, the algorithm from Lecture 16 can be executed if f is a proper function where, instead of being explicitly
supplied in the input, we are able to compute f(S) efficiently for any S C V. Essentially the only thing that
needs to be proven to establish correctness and efficiency of the algorithm is the following.

Lemma 1 If f is a proper function and F C F is not feasible, then the minimal sets S with §(S)NF = and
f(S) =1 are connected components of (V, F).

Proof. Suppose S is such that §(S)NF =0 and f(S) = 1. Because §(S) N F = 0 then S is the union of some
connected components of (V, F). Because f(S) = 1, we know S # ().

Assume S is not a single connected component. Let C' C S be any connected component and note that C' — S
is also a union of connected components. Because f is proper, we then have either f(S) =1 or f(C —S) =1.
Therefore, S is not a minimal subset with f(S) =1 and §(S) N F = 0. [ ]

Proof of Claim 1. First recall that in any tree on n nodes, the total degree is 2(n — 1). If S C (nodes in T')
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is such that all leaves are is S, then:

Z degy(v) = Z degy(v) — Z degy(v)

veES veT V€S
—2(n—1)— 3 degs(v)
vgS
<2(n—1)—2(n—195]) (Because degp(v) > 2 for a non-leaf v)
=2[5| —2. (18.1)

The total degree of nodes in S is 2|S| — 2 hence the average degree of v € S is < 2.

We will heavily use the notation from the STEINER FOREST algorithm from last lecture, with the understanding
that the algorithm applies to arbitrary proper functions. Now consider iteration i. Let C; be the set of connected
components of (V, F;) and note that C; C C} is the set of components S of (V, F;) with f(S) = 1.

Consider the graph H = (C/, E;) where we have an edge in E; for every (u,v) € F with u and v in different
components of C. First, we claim that H is a forest. To see this, first note that F} is a forest for every iteration
' because we only add a single edge per iteration and this edge bridges two connected components (so it cannot
create a cycle).

Consider the final set of edges F’ after the first loop but before the pruning. Because the components of (V, F;)
are connected subtrees of F”’, then contracting them results in a forest. The edges in E; are a subset of the
edges that remain after these components are pruned.

Finally, we prove that all leaves in H are active. To achieve this, we are going to use the fact that function f
is proper and that F' is minimal.

Suppose that S is an inactive leaf on H with parent edge e. Let B be the collection of connected components
in C; that are connected to S. Because H is a forest, then the restriction of H to B and all incident edges is a
tree.

Then:

1. f(S) = 0: This is simply because S is inactive.

2. f(B—S) = 1: To see this, note by minimality that F' is feasible but F' — {e} is infeasible. Lemma 1
implies there is some connected component S’ of (V, F' — {e}) that has f(S’) = 1. But the only connected
components in (V, F — {e}) that are not also in (V, F) are S and B — 5. We know f(S) = 0, so it must
be that f(B —S) = 1. This is illustrated in Figure 18.1.

3. Since f is proper, f(V — (B — 5)) = 1 by property 2. Equivalently, f((V — B)US) =1
Therefore, either f(V —B) =1 or f(S) =1 by property 3. Again, since f(S) = 0 it must be that f(V — B) = 1.
But if f(V — B) =1, then f(B) = 1 by property 2. However, §(S) N F = () which contradicts F being feasible.

18.2 The k-Median problem

Now we take a short break from LPs.

The k-MEDIAN problem is a variant of the k-SUPPLIERS problem we have seen in Assignment 2. We are given
a set of vertices V' portioned into clients C' and facilities F' =V — C as well as distances d(i,j) for all i,5 € V.
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Figure 18.1: Tllustration for proof of claim 1: The set B contains all nodes connected to inactive leaf S in the graph H
and e denotes the parent edge of S.

We are also given integer 1 < k < |F|. The goal is to find a S C F, with |S| = k, that minimizes

f(S) 2 max d(i, j) Z d(j, S (18.2)

jeC jec

Note that rather that tying to minimize the maximum distance of a client to a facility as in k-SUPPLIERS, we
minimize the sum of distances between clients and their nearest facility.

A simple greedy algorithm for the k-MEDIAN problem is presented below. For i € S,i’ € F —S we let S — ¢+
denote (S — {i}) U {i'}.

Algorithm 1 Local Search for k-MEDIAN
S < any subset of F of size k
while 3ie€ S,i' e F— S st f(S)> f(S—i+1i) do
S+ S—i+d
end while
return S

We will show the above algorithm is a 5-approximation for the k-MEDIAN problem. However, it is not guaranteed
to run in polynomial time. To overcome this issue, we consider a slight variant of Algorithm 1 where € is a
parameter we may specify.

Claim 2 Algorithm 2 runs in polynomial time in the input size and %

Proof. It is easy to check if there is a 0-cost solution. If some client j has d(i, j) > 0 for any facility then there
is no 0-cost solution. Otherwise, we may assume d(z,7') > 0 for any two 7,4, otherwise we can discard one of
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Algorithm 2 Polynomial-Time Local Search for k-MEDIAN
If there is a solution with cost 0, then return it.
0+ ¢/(10- k)
S < any subset of F of size k
while 3ie S,/ e F—Sst (1—-90)-f(S)> f(S—i+4i) do
S« S—i+7
end while
return S

them which does not change the optimum (clearly there is no point of opening both if d(¢,i") = 0). But then
there is a 0-cost solution if and only if the number of remaining facilities is at most k.

Next, let
n - max; ; d(l,])

ming j.qe;, j)>0 d(i,7)

A:

Note that log A is polynomial in the input size (i.e. number of bits used to describe the input).

Let S; and SF denote the initial and final set S used by the algorithm respectively. If ¢t equals the number of
iterations performed by the algorithm then

f(Sp) < (1=0)"f(S).
The claim is that ¢ < % In A, which is polynomial in the input size and %

Otherwise, we would have

1
o t 71nA:7
(1-9)'<e X

where we have used the fact that (1 —6)/° < 2. In other words, A < f(S;)/f(SF).
However, we know f(Sr) < n-max; ; d(4, j) because each of the n clients travels distance at most the maximum
distance in the metric. and we also know f(Sp) > min; ;.4 j)>0 d(%,j) because there is no 0-cost solution so

some client has to travel distance at least the minimum nonzero distance in the metric. Thus, f(S7)/f(Sr) < A
which contradicts what we just saw.

Therefore, this is a polynomial-time algorithm. ]



