CMPUT 675: Approximation Algorithms Fall 2014

Lecture 16 (Oct 10): MuLTICUT in Trees
Lecturer: Zachary Friggstad Scribe: Nikos Fasarakis-Hilliard

16.1 Relaxed Complementary Slackness

In previous lectures, the concept of duality was introduced for linear programs (LPs). A general form of a LP
along with its dual is shown bellow:

minimize: ¢’'x (Primal) maximize: b’y (Dual)
subject to: Ax > b, (16.1) subject to: ATy <e, (16.3)
x > 0. (16.2) y > 0. (16.4)

We also saw a property of optimal primal & dual LP solutions called complementary slackness. It provides a
connection between the optimal solutions of both the primal and the dual problem. Complementary slackness
can also be utilized in the context of approximation algorithms.

Theorem 1 (Relazed Complementary Slackness): Suppose X and y are feasible primal and dual solutions and
suppose o and B are values such that

(1) Z; =0 or), Ai;7; > cj/a, for each j,

(2) 5; =0 or Zj A;;z; > Bby, for each i,

then cTx < af - OPTp and by > OPTpp/af.

Proof.

OPTrp <c'x= Z CjT; (Since % is feasible)

J
< Z (az A7) T (Condition (1) and x >0)

j i

=ay (D Ayz;)y

i J
< OéZﬂbiﬂi (Condition (2) and y > 0)
<apf-OPTLp (By weak duality and feasibility of y)
|

16-1

16-2 Lecture 16: MULTICUT in Trees

16.2 Multicut in Trees

In the MUTLICUT problem in trees, we are given a tree T = (V, E), edge costs ¢, > 0 for each edge e € F, and k
pairs of vertices (s1,t1), (S2,t2), ... (Sk,tk). The goal is to find the cheapest F' C E such that all (s;,¢;) pairs
are disconnected in (V, E — F) (i.e no s; —t; path in (V, F — F)). We studied this problem in general graphs in
lecture 13.

As in lecture 13, we introduce variable x. which indicates whether or not edge e € FE is cut in the solution.
Let P; denote the set of edges in the unique path between vertices s; and ¢; in T. The following is a valid LP
relaxation:

minimize: Zcexe (MT-Primal)
ecE
subject to: Y we >1, 1<i <k, (16.5)
eeP;
x>0, (16.6)
with corresponding dual
k
maximize: Z fi (MT-Dual)
i=1
subject to: Z fi < ce, for each edge e € F, (16.7)
1:e€P;
f>o0. (16.8)

Suppose T is rooted at an arbitrary vertex (Fig. 16.1). For each 1 < i < k, let v(¢) be the deepest common
ancestor of s;,t;. The following algorithm is a 2-approximation for the MUTLICUT problem on trees.

Algorithm 1 MuTLICUT on Trees

F«10
f<o0
STEP 1: Initialization Phase
for i in decreasing order of the depth v(i) do
if FN P, =0 then
raise f; until some dual constraint goes tight.
add all e € P; whose dual constraint goes tight to F'.
end if
end for
STEP 2: Pruning Phase
for each e € F' in reverse order of when it was added to F' do
if F — {e} is feasible then
F + F — {e}.
end if
end for
return F

Theorem 2 cost(F) < 20PTyp.

Lecture 16: MULTICUT in Trees 16-3

S3 e t]
tS S2 t3 Sl S4 t4 Si Sj

Figure 16.1: Left: Tree T' = (V, E) with 5 s;,¢; pairs. Note that s; = t; is allowed for some ¢ # j. The deepest common
ancestor of s;,t;, denoted as v;, is also depicted. Right: Graphical illustration of proof of Theorem 2.

Proof. Let x be the integer solution

_ 1, e€eF,
xez{ 0 edF (16.9)

for the set F' returned by the algorithm.

Note: Due to step 1 of the algorithm, z; = 1if), . P, fi = ce, so the relaxed complementary slackness condition
(1) holds with aw = 1. All that is left to show is that

fi>0=|PNF|<2, (16.10)

e, > . p, Te < 2. If so, the relaxed complementary slackness condition (2) holds with 8 = 2.

Claim 1 For each i such that f; > 0, there is at most one edge in F on the s;-v(i) path and and most one edge
on the v(i)-t; path.

To see this, suppose the s;-v(i) path has two edges e, e’ € F and that e lies bellow ¢’ (see Fig. 16.1-right). Since
F — {e} is not feasible when it is considered in step 2 of the algorithm (or else we could have removed it), there
is some 1 < j < k such that |P; N F| = {e}.

Note: v(j) is deeper than ¢’ and e is deeper than v(j) since e € P; but ¢’ € P;.

Since f; > 0 and v(j) is deeper that v(i), e was not in F just after the iteration in step 1 of the algorithm that
considered j. So, some other e € P; was in F' after iteration j. Therefore, e is added to £ after e.

The pruning considered e before € due to reverse order processing. But this contradicts the fact that e was the
only edge in |P; N F| at this time.

Therefore Claim 1 holds and so does (16.10), concluding the proof.]

