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15.1 Introduction by Example

Given a linear program and a feasible solution x′, it is easy to convince someone that x′ is not optimal by simply
providing an even better solution. However, if x′ is optimal then is there any easy way to be convinced of this
fact? Is there a short proof of the fact that no other feasible solution is better?

We saw earlier that there is always an optimal solution that is also an extreme point, so we could enumerate
all possible extreme points and see if any one of them is better than x′. However, this “proof” is very long as
there could be exponentially many extreme points.

There is a much nicer way. Consider the following example.

minimize : 3x1 + x2 + 4x3
subject to : x1 + 2x2 ≥ 3

x1 + 2x3 ≥ 2
2x1 + 3x2 + x3 ≥ 4

x1, x2, x3 ≥ 0

(LP-Example)

It is easy to check that the solution x′ = (0, 3/2, 1) is feasible and has value 11/2. Is there any better solution?

We can generate lower bounds by scaling some of the constraints and adding them together. For example,
1
2 ( constraint # 2) + 1

3 (constraint # 3) is

7

6
x1 + x2 +

4

3
x3 ≥

7

3
.

Since we only took nonnegative multiples of the constraints (so we did not flip the inequality sign), this constraint
must be satisfied by any feasible solution to (LP-Example). Note that the coefficient of each xi in this constraint
is at most its coefficient in the objective function. Since xi ≥ 0 is also a constraint, this means any feasible
solution x′′ must satisfy

3x′′1 + x′′2 + 4x′′3 ≥
3

2
x′′1 + x′′2 + 2x′′3 ≥

7

3
.

That is, the optimum solution value to this linear program is at least 7
3 .

Is there an even better lower bound we can generate in this manner? Yes, in fact this process can be automated:
we can model the problem of finding the best possible lower bound that can be obtained this way as another
linear program that we call the dual of the original linear program.

Let y1, y2, y3 denote the coefficients of the linear combination. The following linear program finds the best lower
bound on the optimum solution value to (LP-Example).
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maximize : 3y1 + 2y2 + 4y3
subject to : y1 + y2 + 2y3 ≤ 3

2y1 + 3y3 ≤ 1
2y2 + y3 ≤ 4
y1, y2, y3 ≥ 0

To recap, for any feasible solution y′, the objective function value of y′ is a lower bound on the optimum
solution to (LP-Example). The constraints of this new linear program ensure that the coefficients of each

xi in
∑3

j=1 yj · (constraint # i of (LP-Example)) are at most their corresponding coefficient in the objective
function of (LP-Example). Finally, yi ≥ 0 ensures we only take a nonnegative linear combination of the
constraints of (LP-Example).

The solution y′ = (1/2, 2, 0) is feasible for this linear program and has value 11/2. That is,

1

2
· (constraint # 1) + 2 · (constraint # 2) =

5

2
x1 + x2 + 4x3 ≥

11

2
.

Thus, for any feasible solution x′′ to (LP-Example) we have

3x′′1 + 2x′′2 + 4x′′3 ≥
5

2
x′′1 + x′′2 + 4x′′3 ≥

11

2

so the solution x′ above is in fact optimal.

15.1.1 The General Recipe

In the previous section, we saw an example of how to prove optimality of a proposed LP solution by considering
some appropriate linear combination of the constraints. We saw that finding the best lower bound that can be
obtained using this method involved solving another LP that we called the dual LP.

Here is the general recipe. Consider a linear program in standard form.

minimize : cT · x
subject to : A · x ≥ b

x ≥ 0
(Primal)

For each of the i constraints of the form A · x ≥ b, let yi be a dual variable for that constraint. Recall that
we want to compute the best lower bound possible by considering a nonnegative linear combination of the
constraints. This is expressed by the following linear program.

maximize : bT · y
subject to : AT · x ≤ c

y ≥ 0
(Dual)

Theorem 1 (Weak Duality) Let x be a feasible solution to (Primal) and y be a feasible solution to (Dual).
Then cT · x ≥ bT · y.
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Proof.

cT · x =
∑
j

cj · xj

≥
∑
j

(∑
i

Ai,j · yi

)
· xj (15.1)

=
∑
i

∑
j

Ai,j · xj

 · yi
≥

∑
i

bi · yi (15.2)

= bT · y

The inequality (15.1) is justified because x ≥ 0 and AT ·y ≤ c. The inequality (15.2) is justified because y ≥ 0
and A · x ≥ b.

So, what is the best lower bound on the optimum primal solution we can prove using this approach? We can,
in fact, always prove an optimum lower bound!

Theorem 2 (Strong Duality) The primal LP has an optimum solution if and only if the dual LP has an
optimum solution. In this case, their optimum solutions have the same value.

See [KV12] for a proof.

Sometimes, our original (primal) LP is a maximization LP. Using this same approach (i.e. find the best upper
bound by some appropriate combination of the constraints) leads to essentially the same results. If the primal
LP is max{cT · x : A · x ≤ b,x ≥ 0} then the dual is min{bT · y : AT · y ≥ c,y ≥ 0}.

Theorems 1 and 2 hold in this setting in the sense that the value of any dual solution provides an upper bound
on the value of any primal solution and that their optimum solutions have equal value. Notice that taking the
dual of this dual LP then results in the primal again, so LPs come in pairs: the primal LP and its dual.

Note that the dual of the dual of an LP is the original LP itself: LPs come in pairs.

Question: What if some of the constraints in the primal LP are equality constraints?
Answer: If the i’th constraint of the primal is an equality constraint, then do not add the nonnegativity
constraint yi ≥ 0 for the corresponding dual variable yi.

Question: What if some of the primal variables are not restricted to be nonnegative?
Answer: If xj ≥ 0 is not present in the constraints, then make the j’th constraint of the dual an equality
constraint.

Question: What if we have a ≤ constraint (e.g. x1 − 3x2 ≤ 4) for a primal “min” LP or a ≥ constraint for a
primal “max” LP?
Answer: Just negate it to switch the direction of the inequality before constructing the dual.

The rows of the following table summarize the rules for constructing the dual of an LP. To use it, identify the
column that corresponds to the type of primal LP you start with (i.e. whether it is a min or max LP). For each
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constraint of the primal, check to see if it is an inequality or equality constraint to see if the corresponding dual
variable should be nonnegative or unconstrained. For each variable of the primal, check to see if it is constrained
to be nonnegative or not to determine if the corresponding dual constraint should be an inequality or equality
constraint.

minimize maximize∑
j Ai,jxi ≥ bi yi ≥ 0∑
j Ai,jxi = bi yi unconstrained

xi ≥ 0
∑

iAi,jyi ≤ cj
xi unrestricted

∑
iAi,jyi = cj

Question: Do we still have weak and strong duality for these more general LPs?
Answer: Yes, Theorems 1 and 2 hold in this more general setting. The proof of Theorem 1 is pretty much
identical, except we have to say things like “because either yi ≥ 0 or constraint i is an equality constraint” to
justify the inequalities.

15.1.2 Application 1: Set Cover

Recall the Set Cover problem. We are given a finite set X and a collection S of subsets of X. Each S ∈ S
has a cost c(S) ≥ 0. The goal is to find the cheapest subcollection C ⊆ S that covers X (i.e. ∪S∈CS = X).

Recall in our analysis of the greedy algorithm that we constructed a set C and values z̄i for each item i ∈ I with
the following properties:

1. z̄i ≥ 0 for each i ∈ X

2.
∑

i∈S z̄i ≤ H|S| · c(S) for each S ∈ S where Hm =
∑m

a=1
1
a = lnm+O(1) is the m’th harmonic number

3.
∑

i∈X z̄i = cost(C)

Setting k = maxS∈S |S|, we used these values to show that cost(C) ≤ Hk ·OPT .

Now consider the following LP relaxation for Set Cover:

minimize :
∑

S∈S c(S) · xS
subject to :

∑
S:i∈S xS ≥ 1 for each item i ∈ X

x ≥ 0
(LP-SC)

To construct the dual, note that the constraints of the primal correspond naturally to the items in X, so we
will use a dual variable zi for each i ∈ X. The b vector in the relaxation contains all 1s, so the objective of the
dual is simply to minimize

∑
i zi. Since we have a variable for each S ∈ S, the dual will have a constraint for

each S ∈ S and the right-hand side of this constraint will be c(S).

Usually the most tricky part about constructing the dual is coming up with a nice way to express its constraint
matrix. Note that in the constraint matrix A for the LP relaxation, each column corresponds to a subset S and
the 1 entries in that column are in the rows/items i contained in S. So, the S’th row of the dual constraint
matrix contains a 1 for each variable zi where i ∈ S.

The dual LP is:
maximize :

∑
i∈X zi

subject to :
∑

i∈S zi ≤ c(S) for each subset S ∈ S
z ≥ 0
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Now, the properties of the specific values z̄ listed above show that z̄ is almost a dual solution. In fact, the
vector z̄/Hk is in fact a feasible dual solution by properties 1 and 2 for z̄. Finally, let x∗ be an optimum primal
solution. By weak duality, we have

OPTLP =
∑
S

c(S) · x∗S ≥
1

Hk

∑
i

z̄i =
1

Hk
· cost(C)

where the last equality is from property 3.

Theorem 3 The integrality gap of the LP relaxation (LP-SC) for Set Cover is at most Hk where k is the
size of the largest set S ∈ S.

Note that we proved this without rounding an optimal LP solution. LP Duality was the main tool.

15.1.3 Application 2: Generalized Max-Flow/Min-Cut Theorems

Recall the Multicut LP relaxation from Lecture 13.

minimize :
∑
e∈E

ce · xe

subject to :
∑
e∈P

xe ≥ 1 for each 1 ≤ i ≤ k and each path P ∈ Pi

x ≥ 0

The dual of this LP has a variable yiP for each 1 ≤ i ≤ k and each P ∈ Pi. It is

maximize :

k∑
i=1

∑
P∈Pi

yiP

subject to :
∑

i,P :e∈P
yiP ≤ ce for each edge e ∈ E

y ≥ 0

The dual LP solves what is called the Maximum Multicommodity Flow problem. Recall that an s− t flow
in an undirected graph consists of bidirecting each edge e ∈ E (i.e. for e = (u, v) ∈ E, replacing e with the
two directed edges (u, v) and (v, u)) and assigning a “flow” 0 ≤ fe to each directed edge so that the total flow
entering some node v 6= s, t equals the total flow exiting v. Furthermore, if e′, e′′ are the two directed copies of
e then fe′ + fe′′ ≤ fe. The value of this flow is the net flow exiting s, namely

∑
e exiting s fe −

∑
e entering s fe

(this also equals the net flow entering t).

A multicommodity flow for pairs (s1, t1), . . . , (sk, tk) consists of a flow f i for each 1 ≤ i ≤ k such that for any
edge e, the total flow sent by all pairs across e is at most ce. The Maximum Multicommodity Flow problem
is to find a multicommodity flow with maximum total value over all pairs.

There is a natural correspondence between the multicommodity flows and feasible solutions to the dual LP
above. Namely, every feasible dual LP solution gives rise to a multicommodity flow with the same value. This
follows through the correspondence of flows and their path decompositions (the details are omitted here). This
is also why we can rewrite the primal LP for Minimizing Congestion using only polynomially many variables
(i.e. using flows of value 1 instead of assigning weights to paths).

The well-known max-flow/min-cut theorem states that for any edge-capacitated graph G = (V,E) and any two
s, t ∈ V that the value of a maximum s−t flow equals the minimum capacity s−t cut. We proved the integrality
gap of the primal LP is at most 2 ln(k+ 1). Using LP duality, this can be interpreted as sort of a generalization
of the max-flow/min-cut theorem for undirected graphs to multicommodity flows and multicuts.
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Theorem 4 (Multicommodity Flow/Cut Gap) Let f∗ denote the value of a maximum multicommodity
flow and C∗ denote the cheapest multicut. Then f∗ ≤ C∗ ≤ 2 ln(k + 1) · f∗.

15.2 Complementary Slackness

Suppose x∗ and y∗ are optimal solutions to the primal and dual. By strong duality, cT · x = bT · y∗ so both
inequalities (15.1) and (15.2) in the proof of weak duality for these solutions must in fact hold with equality.

In the proof of weak duality, the inequalities held term-by-term. That is, the (15.1) was true because for every
j, either

a) cj ≥
∑

iAi,j · y∗i and x∗j

or

b) The j’th constraint in the dual is an equality constraint.

So, if the inequality (15.1) to hold with equality it must be the case that either x∗j = 0 or cj =
∑

iAi,j · y∗i
for each j. Similarly, if inequality (15.2) is to hold with equality it must be the case that either y∗i = 0 or
bi =

∑
j Ai,j · x∗j for each i. These are the so-called complementary slackness conditions.

The converse is true as well, if x and y are feasible primal and dual solutions and if these complementary
slackness conditions hold, then following the proof of weak duality we see that inequalities (15.1) and (15.2)
hold with equality so in fact cT · x = bT · y so both x and y are optimal solutions for their respective LP.

Summarizing:

Theorem 5 (Complementary Slackness) Let x and y be feasible primal and dual LP solutions. Then both
x and y are optimal for their respective linear program if and only if the following two conditions hold:

• For every i, either yi = 0 or
∑

j Ai,j · xj = ci.

• For every j, either xj = 0 or
∑

iAi,j · yi = bi.

Note: If, say, only the first condition holds then we cannot conclude that at least one of x or y is optimal for
its respective LP. They are all-or-nothing conditions.

15.3 The Uncapacitated Facility Location Problem

We finally get to our next facility location problem known as the Uncapacitated Faciliity Location prob-
lem. Here, we are given a set of clients C, a set of potential facility locations F , and metric costs c(i, j) between
these clients and facilities. Furthermore, each potential facility i ∈ F has an opening cost fi. The goal is to
open some facilities and assign each client to an open facility to minimize the total opening and assignment
cost. That is, we should find some nonempty S ⊆ F to minimize:∑

i∈S
fi +

∑
j∈C

d(j, S).
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The term “uncapacitated” in the title means each facility can serve an unbounded number of clients. More
complicated (and interesting) variants place restrictions on how many clients each facility can handle but we
will not consider them here.

Consider the following LP relaxation. We have variables yi indicating whether facility i is open or not and
variables xi,j indicating whether client j is assigned to facility i. The relaxation is as follows:

minimize :
∑
i∈F

fi · yi +
∑

i∈F,j∈C
c(i, j) · xi,j

subject to :
∑
i∈F

xi,j = 1 for each j ∈ C

yi − xi,j ≥ 0 for each i ∈ F, j ∈ C

x,y ≥ 0

(FL-Primal)

The first constraints ensure every client is assigned to some facility and the second constraints ensure that a
client can only be assigned to an open facility.

This LP is not in standard form as it involves equality constraints. However, the recipe for constructing duals
mentioned earlier says this simply means the corresponding dual variable is not constrained to be nonnegative.

We use dual variables αj for each constraint of the first type and βi,j for each constraint of the second type.
The dual is then:

maximize :
∑
j∈C

αj

subject to : αj − βi,j ≤ c(i, j) for each i ∈ F, j ∈ C∑
j∈C

βi,j ≤ fi for each i ∈ F

β ≥ 0

(FL-Dual)

The first set of constraints in the dual correspond to primal variables xi,j and the second set of constraints
correspond to primal variables yi. Nonnegativity of the α variables is ommited because the corresponding
primal constraints are equality constraints.

The approximation we see here requires us to solve both the primal and the dual. The dual solution will help
guide the execution of the algorithm to ensure we find a relatively cheap solution. The following lemma helps
illustrate why this is.

From now on, let x∗,y∗ be an optimal primal solution and α∗, β∗ be an optimal dual solution. Let Fj = {i ∈
F : xi,j > 0} be the set of facilities that partially serve i. Finally, let i(j) denote the facility in Fj with the
cheapest opening cost. That is, fi(j) = mini∈Fj

fi.

Lemma 1 For any i ∈ Fj, c(i, j) ≤ αj.

Proof. This crucially relies on the fact that both the primal and dual solutions are optimal. For i ∈ F we have,
by definition, x∗i,j > 0. By complementary slackness (i.e. Theorem 5), the corresponding dual constraint holds
with equality: αj − βi,j = c(i, j). Since βi,j ≥ 0 is also a constraint of the dual, we see in fact that αj ≥ c(i, j).

So, if we were to ensure that each client gets assigned to some facility in Fj then we know the total assignment
cost is at most

∑
j∈C α

∗
j = OPTLP. However, this does not account for the facility opening cost. It may be

too expensive to open a facility in each Fj . However, if we open the cheapest facility in a collection of disjoint
facilities sets Fj then the opening cost is bounded.



15-8 Lecture 15: LP Duality

Lemma 2 Suppose C ′ ⊆ C is such that Fj ∩ Fj′ = ∅ for any distinct j, j′ ∈ C ′. Then
∑

j∈C′ fi(j) ≤ OPTLP.

Proof. First, for any j ∈ C the constraints of LP (FL-Primal) show.

fi(j) =
∑
i∈Fj

fi(j) · x∗i,j

≤
∑
i∈Fj

fi · x∗i,j

≤
∑
i∈Fj

fi · y∗i

Finally, since Fj ∩ Fj′ = ∅ for any j, j′ ∈ C′ then∑
j∈C′

fi(j) ≤
∑
j∈C′

∑
i∈Fj

fi · y∗i ≤
∑
i∈F

fi · y∗i ≤ OPTLP.

Algorithm 1 An LP-based Uncapacitated Facility Location approximation

x∗,y∗, α∗, β∗ ← optimal primal and dual solutions
C ′ ← ∅
Fj ← {i ∈ F : x∗i,j > 0} for each j ∈ C
i(j)← arg mini∈Fj fi for each j ∈ C
for each j ∈ C in increasing order of α∗j do

if there is some j′ ∈ C ′ such that Fj ∩ Fj′ 6= ∅ then
assign j to i(j′)

else
open facility i(j) and assign j to i(j)
C ′ ← C ′ ∪ {j}

end if
end for

Theorem 6 The solution found by Algorithm 1 has cost at most 4 ·OPTLP.

Proof. By construction, the only open facilities are those of the form i(j) for some j ∈ C ′. By construction,
Fj ∩ Fj′ = ∅ for every two j, j′ ∈ C ′ so the total opening cost is at most OPTLP by Lemma 2.

Now for the connection costs. For j ∈ C ′, we assigned j to i(j) ∈ Fj and c(j, i(j)) ≤ α∗j by Lemma 1. If j 6∈ C ′,
then we connected j to some i(j′) for some j′ that was in C ′ during the iteration for client j where Fj ∩Fj′ 6= ∅.
Let i be some facility in Fj ∩ Fj′ . Finally, we have αj′ ≤ αj because j′ was considered before j in the loop.

By the triangle inequality and by using Lemma 1 again to bound both c(i(j′), j′) and c(i, j′) (noting that
i(j′), i ∈ Fj′) we have

c(i(j′), j) ≤ c(i(j′), j′) + c(i, j′) + c(i, j) ≤ αj′ + αj′ + αj ≤ 3 · αj .

Overall, the total connection cost is at most
∑

j∈C 3αj = 3 ·OPTLP. Therefore, the total connection and facility
opening cost is at most 4 ·OPTLP.

The Uncapacitated Facility Location problem is fairly well understood, the gap between the known
upper and lower bounds is quite small. Namely, there is a 1.488-approximation [L11] and there is no 1.463-
approximation unless NP ⊆ DTIME(nO(log logn)) [GK98].
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