
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 14 (Oct 3): Multicut (Part 2)
Lecturer: Zachary Friggstad Scribe: Leah Hackman

14.1 Multicut Problem

Recall the Multicut problem, in which we are given a graph G = (V,E) with edge costs ce ≥ 0 and pairs of
nodes (s1, t1), . . . , (sk, tk). We should find the cheapest subset of edges whose removal disconnects si from ti for
each 1 ≤ i ≤ k. Consider the following LP relaxation.

minimize :
∑
e∈E

ce · xe

subject to :
∑
e∈P

xe ≥ 1 for each path connecting some pair(si, ti)

xe ∈ {0, 1} for each edge e ∈ E

Here xe = 1 corresponds to removing e. We relax the constraint xe ∈ {0, 1} to be xe ∈ [0, 1] so that we have a
linear problem. Next, recall the following notation. Given an LP solution x∗, let:

• d(u, v) = the minimum length path from u to v using the values of x∗ as edge lengths. Note hat d(si, ti) ≥ 1
because of the constraints in our LP.

Furthermore, for a subgraph G′ of G,

• BG′(v, r) = {u in G′ : d(u, v) ≤ r} This forms a “ball” around v with radius r.

• VG′(si, r) = OPTLP

k +
∑

e=(u,v):
u,v∈BG′ (si,r)

ce · xe +
∑

e=(u,v):
u∈BG′ (si,r),
v /∈BGG′ (si,r)

ce · (r − d(si, u)).

We refer to this as the “Volume” of the ball.

• δG′(BG′(si, r)) = {e an edge of G′ : e = (u, v), u ∈ BG′(si, r), v /∈ BG′(si, r)}. This is the set of edges
which cross the boundary of the ball.

Note that the definition of BG′(v, r) uses the original distances d (i.e. the distances in G, not G′). Algorithm 1
is an approximation for Multicut.

We already have discussed the correctness of this algorithm last lecture, namely that the returned set F discon-
nects all pairs. Now we seek to prove the approximation bounds for this algorithm.
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Algorithm 1 An approximation algorithm for the Multicut Problem using a Linear Program solution

G′ ← G
F ← ∅
x∗ ← an optimal LP solution
while There is an si − ti path in G′ for some i do

i) r ← some r ∈ [0, 1/2) such that c(δG′(BG′(si, r))) ≤ 2 · ln(k + 1) · VG′(si, r)
ii) F ← F ∪ δG′(BG′(si, r))
iii) remove BG′(si, r) and all incidental edges from G′

end while
return F

Theorem 1 If step i always succeeds (i.e. we can always find a value r ∈ [0, 1/2) s.t. c(δG′(BG′(si, r))) ≤
2 · ln(k + 1) · VG′(si, r)) then the cost of the returned set F is ≤ 4 · ln(k + 1) ·OPTLP.

Proof of Theorem 1. Consider each iteration of the algorithm and say that (si, ti) is one of the considered
pairs. Let Gi denote the graph G′ just before the ball around si was removed in step iii.

For simplicity, let Bi be the ball BGi(si, r) in this iteration. Let Fi be the edges added to F . That is,
Fi = δGi(Bi). Finally, let ri be the radius chosen in this iteration.

Note that δGi(Bi) ∩ δGj (Bj) = ∅ for different i, j. This is because if, say, i was considered earlier than j then
all edges incident to Bi were removed from Gi and Gj is a subgraph of this graph. More generally, for two balls
Bi, Bj for indices i, j considered by the algorithm we have that no edge is incident to both a vertex in Bi and
a vertex in Bj .

Finally, note that for any e = (u,w) ∈ δGi(Bi) with u ∈ Bi, w 6∈ Bi that ri − d(si, u) ≤ x∗e. Otherwise
d(si, w) ≤ d(si, u) + x∗e < r which contradicts w 6∈ Bi.

We bound the cost of F as follows, where all sums in the bounds below are restricted to i ∈ {1, . . . , k} such that
some iteration of the algorithm considered pair (si, ti).

cost(F ) =
∑
i

cost(Fi)

≤ 2 · ln(k + 1) ·
∑
i

V (si, r)

≤ 2 · ln(k + 1) ·
∑
i

OPTLP
k

+
∑

e incident to
some v∈Bi

because r−d(si,u)≤x∗e︷ ︸︸ ︷
ce · xe



≤ 2 · ln(k + 1) ·


because we consider
at most k values of i︷ ︸︸ ︷

OPTLP +

no edge is incident to
more than one Bi︷ ︸︸ ︷

OPTLP


= 4 · ln(k + 1) ·OPTLP

All that is left is to show it is always possible to find a value of r for which r ∈ [0, 1/2) and c(δGi(BGi(si, r))) ≤
2 · ln(k + 1) · V (si, r) (here, Gi also denotes the subgraph G′ just before the ball BG′(si, r) was removed).
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Recall that for a continuous function on an interval f : [a, b]→ R, the average value of f in this interval is:

avg(f) =
1

a− b

∫ b

a

f(x)dx.

This integral is still defined if f is continuous at all but finitely many values in [a, b] (i.e. the Riemann integral

can “handle” finitely many discontinuities). There is some x̄ ∈ [a, b] such that f(x̄) ≤ 1
a−b

∫ b
a
f(x)dx (i.e. if

f(x̄) > z for all x ∈ [a, b] then
∫ b
a
f(x)dx > (b− a)z).

Our goal is to show that the average value of c(δG′(BG′(si, r)))/VG′(si, r) is at most 2 ln(k+ 1) over r ∈ [0, 1/2].

Now, let

• B(si, 1/2) = {v1, . . . , vm}

• rj = d(si, vj)

Also, suppose that 0 = r1 ≤ r2 ≤ · · · ≤ rm, where v1 = si and say rm+1 := 1/2. For ease of notation, let us also
define c(r) := c(δGi(BGi(si, r))) and V (r) := VGi(si, r).

Note that the function V (r) is piecewise linear with the only possible “break” points at some rj . Furthermore,

for any r ∈ (0, 1/2) such that r 6= rj for any 1 ≤ j ≤ m note that dV (r)
dr = c(r).

For the the sake of intuition, first suppose dV (r)
dr was defined at all r ∈ [0, 1/2] and was equal to c(r). If so, then

the average value of the function V (r)
c(r) in [0, 1/2] is simply

c(r)

V (si, r)
=

1

1/2
·
∫ 1/2

0

c(r)

V (si, r)
dr

= 2 ·
∫ 1/2

0

dV (si, r)

V (si, r)

= 2 · (ln(V (1/2))− ln(V (0)))

= 2 · ln
(
V (1/2)

V (0)

)
≤ 2 · ln

(
OPTLP/k +OPTLP

OPTLP/k

)
= 2 · ln(k + 1)

The inequality uses the observation that V (r) ≤ OPTLP

k +OPTLP.

Observe that the inequality would not make sense if we did not include the extra OPTLP/k term in the definition
of volume (otherwise V (0) = 0). It must be big enough to ensure that this expression is not too large. On
the other hand, it must be small enough so that the value k · (correction term) is not too large in the proof of
Theorem 1 above. The value OPTLP/k strikes the right balance.

This does not complete the proof because V (r) may not be differentiable at points r1, . . . , rm+1; they may even
be points of discontinuity. An example of how such discontinuities can arise is in the Williamson and Shmoys
text.
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Such discontinuities are not a big problem since V (r) is, at least, an increasing function in [0, 1/2]. Let us break
up our integral into separate integrals over each of the continuous regions between our discontinuities (this is
the natural way to handle a Riemann integral over a function with finitely many discontinuities).

For 1 ≤ j ≤ m, let fj : [rj , rj+1]→ R be the linear function with fj(rj) = V (rj) and
fj(rj+1) = V (rj) + c(rj) · (rj+1 − rj). Note that V (r) = fj(r) for all r ∈ [rj , rj+1) and that fj(rj+1) ≤ V (rj).

Now we can bound the average value of c(r)/V (r) as follows.

1

1/2

∫ 1/2

0

c(r)

V (r)
dr = 2

m∑
j=1

·
∫ rj+1

rj

c(r)

V (r)
dr

= 2

m∑
j=1

·
∫ rj+1

rj

c(rj)

fj(r)
dr (c(r) = c(rj) and fj(r) = V (r) for all but one r ∈ [rj , rj+1])

= 2

m∑
j=1

·
∫ rj+1

rj

dfj(r)

fj(r)

= 2

m∑
j=1

ln(fj(rj+1))− ln(fj(rj))

≤ 2 ·
m∑
j=1

lnV (rj+1)− lnV (rj)

= 2 · (lnV (1/2)− lnV (0)) (the sum is telescoping)

≤ 2 · ln(k + 1) (the same arguments as above)

Thus even with the discontinuities, we can still achieve the same bound on our average, and we we are still
guaranteed a point in our range which is equal to or less than this average value.

One final note, we require r ∈ [0, 1/2), not just r ∈ [0, 1/2]. We can prove this for r ∈ [0, 1/2) with a simple
observation. If c(r)/V (r) is constant over [0, 1/2] then choosing any r ∈ [0, 1/2) suffices. Otherwise, one can

show that in fact f(x̄) < 1
b−a

∫ b
a
f(x)dx for some x̄ ∈ (a, b) if f is nonconstant and right-continuous at every

point (as in our case). In either case, we may take r ∈ [0, 1/2).

Finally, we actually need to find such a value r in polynomial time. Note that if c(r) ≤ ln(k + 1)V (r) where
rj ≤ r < rj+1 then it also holds for r being infinitesimally smaller than rj+1. So, we just need to check values
that are slightly smaller than each rj .

Even simpler: with a closer inspection of the analysis we can see that it suffices to choose the value r = rj for
some j = 1, . . . ,m with rj < 1/2 that minimizes

c(rj)
OPTLP

k +
∑

e incident to
some v∈Bj(rj)

cex
∗
e

.

For example, the cost analysis simply used r − d(si, u) ≤ x∗e for estimating the volume.

Discussion

This rounding algorithm is due to Garg, Vazirani, and Yannakakis [GVY96]. To date, it is the best known
approximation for the Multicut problem in undirected graphs. The only lower bounds known are that it is
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NP-hard to approximate better than some constant c. Furthermore, under the so-called unique games conjecture
(which we will discuss later), there is no c-approximation for any constant c [C+06].

In directed graphs, the situation is much worse. The best approximation is roughly anO(n11/23)-approximation [AAC07]
(“roughly” means some log n factors are omitted from the expression). In fact, unless NP ⊆ ZPP (i.e. unless
SAT can be solved by a randomized algorithm that always returns the correct solution in expected polynomial
time) there is no 2log

1−ε(n)-approximation for any constant ε > 0 [CK09]. This means there can be no (logc n)-
approximation for any constant c > 0. Furthermore, there is strong evidence that in fact we cannot approximate
the problem better than nδ for some constant δ > 0 ([CK09] again).

Finally, the integrality gap analysis is tight. That is, there are instances of Multicut whose optimum solution
value is Ω(log k ·OPTLP). Chapter 20.3 of Vazirani’s text describes such an example.
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