
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 31 (Nov 28): Set Cover Hardness
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

31.1 Set Cover Hardness

In this lecture, we prove the following.

Theorem 1 There is some constant c > 0 such that there is no c · ln(|X|)-approximation for Set Cover unless
NP ⊆ ZPTIME(nO(log logn)) where X is the set of items to be covered.

That is, if such an approximation existed then we could solve every problem in NP with a randomized al-
gorithm that always gives a correct answer and has expected running time nO(log logn). Assuming NP 6⊆
ZPTIME(nO(log logn)) is a stronger assumption than P 6= NP, but it is still open and it seems quite plausible.
At the very least, it shows that getting a o(log n)-approximation requires solving a major open problem in
complexity theory in a way that many researchers believe is not possible.

In fact, an even stronger statement holds under the more common P 6= NP assumption: there is no c · ln(n)-
approximation for Set Cover for any constant c < 1 (see the discussion at the end of these notes).

At any rate, the hardness we will show is asymptotically tight since we already know of an Hn = ln(n) +O(1)
approximation for Set Cover.

31.1.1 Label Cover

Our starting point is from the Label Cover problem.

Definition 1 In an instance of the Label Cover problem, we are given a bipartite graph G = (V ;E) where
VL, VR are the two sides of G. Additionally, we are given a finite set of label sets Σ and, for each edge
e = (u, v) ∈ E with u ∈ VL, b ∈ VR, a mapping πe : Σ→ Σ. For a given labelling σ : V → Σ of labels to nodes,
say edge e is satisfied if πu,v(σ(u)) = σ(v). The goal is to find a labelling that maximize the number of satisfied
edges.

The following hardness is known for Label Cover. The statement is quite precise, but the specific parameters
are important in many reduction from Label Cover.

Theorem 2 For any language L ∈ NP and any integer ` ≥ 1, given any instance x of the decision problem “x ∈
L?” we can construct a Label Cover instance, say G = (V ;E) with label set Σ and mappings {πu,v}(u,v)∈E
such that the following hold:

• Completeness: If x ∈ L, then there is some labelling σ that satisfies all |E| edges.

• Soundness: If x 6∈ L, then no labelling satisfies more than 2−` · |E| edges.

31-1

31-2 Lecture 31: Set Cover Hardness

• Size of the Parameters: |Σ| = c` for some constant c and |VL| = |VR| = |x|O(`).

• Regularity: All vertices of G have the same degree dO(`) for some constant d.

Furthermore, the running time of the reduction is |x|O(`).

The Williamson and Shmoys text discusses how to obtain this hardness from the PCP theorem with only one
(highly nontrivial and very interesting) detail left out. We will skip it for the sake of time. It is a very interesting
read and I strongly encourage you to take a look at it.

Corollary 1 There is no constant-factor approximation for Label Cover unless P = NP.

Proof. Invoke the reduction from Theorem 2 with ` = logc ε. This produces a hardness gap of 1 vs. c` = ε.
Since ε is a constant, then ` is as well so the running time of the reduction is polynomial.

However, we can get a much stronger hardness result under slightly stronger assumptions by choosing ` to be
super-constant.

Corollary 2 For any constant 1 > ε > 0, there is no 1/2log1−ε(N)-approximation for Label Cover unless

NP ⊆ DTIME(nO(log1/ε(n))). Here, N is the number of nodes in the label cover instance.

The hardness ratio may seem strange, but for any constants 1 > ε > 0, d > 0 we have that logd(n) grows slower

than 2log1−ε(n) so this implies there is no polylogarithmic approximation for Label Cover.

Proof. Invoke Theorem 2 with ` = α · log
1/ε
2 |x| for some constant α. The running time of this reduction is

|x|O(`).

If x 6∈ L, then at most 2−` · |E| edges can be satisfied by any assignment. For an appropriate choice of constant

α and recalling N ≤ |x|O(`), one can verify that 2log1−ε
2 (N) ≤ 2`.

31.2 From Label Cover to Set Cover

31.2.1 A Helpful Gadget

Consider a set system (U ;C1, C1, . . . , Cm, Cm) where Um is a finite set and for each i we have Ci ⊆ U and
Ci = U −Ci. We are particularly interested in such a set system when the only covers of U that use few of the
listed subsets C1, C1, C2, C2, . . . , CmCm is by choosing some complementary pair Ci, Ci.

Lemma 1 For positive integers m, k, there is set system (U ;C1, C1, . . . , Cm, Cm) with |U | = poly(m, 2k) such
that for any S ⊆ {C1, C1, . . . , Cm, Cm} such that S covers U and |S| ≤ k we must have Ci, Ci ∈ S for some
1 ≤ i ≤ m.

Furthermore, such a set system can be constructed in poly(m, 2k) time.

While proving this lemma with a deterministic construction is a bit tricky, there is a nice and simple randomized
construction of this set.

Lecture 31: Set Cover Hardness 31-3

Lemma 2 There is a randomized algorithm with running time poly(m, 2`) that constructs such a set system
with probability at least 1/2.

Proof. Let U be a set of size ln(2m) · 2k · 2k. For each 1 ≤ i ≤ m form each Ci by adding each x ∈ U to Ci
independently with probability 1/2.

Let S consist of k subsets among {C1, C1, . . . , Cm, Cm} such that |S ′ ∩ {Ci, Ci}| ≤ 1 for each 1 ≤ i ≤ m.
Because the sets in S were formed independently (as S does not contain a complementary pair), then for each
x ∈ U we have Pr[x is not covered by S] = 2−k. So, the probability that S covers U is exactly (1− 2−k)|U |.

The number of different size-k subsets of S is at most (2m)k. By the union bound, the probability that U is
covered by some collection S of size k that includes no complementary pair is at most

(2m)k · (1− 2−k)|U | = (2m)k · (1− 2−k)ln(2m)·2k·2k

≤ (2m)k · e− ln(2m)·2k

= (2m)k · 1

(2m)2k

≤ 1/2

31.2.2 The Construction

We prove Theorem 1 by first going through Label Cover. Specifically, let L ∈ NP and let x be an instance
of the decision problem x ∈ L?.

For the remainder of this proof, we consider the following parameters:

• n := |x|

• ` = Θ(log log n)

• k = Θ(` · k)

To reduce the amount of notation, the leading constants in the Θ(·) terms above will not be explicitly described
and the arguments presented will assume they are chosen appropriately.

Invoke Theorem 2 with the given parameter ` = Θ(log log n) to get a Label Cover instance on graph G =
(V ;E) with sides VL, VR, label set Σ, and constraints πe, e ∈ E.

Also invoke Lemma 2 to find a set system (U ;C1, C1, . . . , C|Σ|, C |Σ|) such that any collection of k sets among

C1, C1, . . . , C|Σ|, C |Σ| that cover U must include a complementary pair. Note that |U | = poly(|σ|, 2`) which, for

the given parameters is bounded by nO(log logn). We assume, from now on, that this construction was successful
(this is discussed more at the end of the analysis).

For each edge e of the Label Cover instance G, we let (Ue;Ce1 , C
e

1, . . . , C
e
|Σ|, C

e

|Σ|) be a new copy of

(U ;C1, C1, . . . , C|Σ|, C |Σ|). In particular, the sets Ue are disjoint for various e.

Finally, for each u ∈ VL and each a ∈ Σ we construct a cover-set Su,a = ∪e∈δ(u)C
e
πe(a) and for each v ∈ VR and

each b ∈ Σ we construct a cover-set Sv,b = ∪e∈δ(v)C
e

b. The idea here is that a complementary pair in the set
system for edge e = (u, v) naturally corresponds to labels a, b that satisfy constraint πe: i.e. if πe(a) = b then
Su,a includes Ceπ(a) = Ceb and Sv,b includes C

e

b so they collectively cover Ue.

31-4 Lecture 31: Set Cover Hardness

The final Set Cover instance (X,S) has X = ∪e∈EUe and

S = {Su,a : u ∈ VL, a ∈ Σ} ∪ {Sv,b : v ∈ VR, b ∈ Σ}.

Note that |X| = |U | · |E| = nO(log logn) and that |S| = |V | · |Σ| = nO(log logn) and that the entire reduction takes
nO(log logn) time.

31.2.3 Completeness

Claim 1 If x ∈ L then there is Set Cover solution using |V | sets.

Proof. Let σ : V → Σ be a labelling of G that satisfies all πe constraints. Our Set Cover solution C is simply
{Sw,σ(w) : w ∈ V }. Note |C| = |V |.

We show that C indeed covers U . Consider any edge e = (u, v) ∈ E, we show C covers Ue. Note that
C includes sets Su,σ(u) and Sv,σ(v) and that πe(σ(u)) = σ(v). Therefore, C covers the complementary pair

Ceπe(σ(u)) = Ceσ(v) ⊆ Su,σ(u) and C
e

σ(v) ⊆ Sv,σ(v) so it covers Ue.

31.2.4 Soundness

Claim 2 If x 6∈ L then any Set Cover solution requires at least k · |V |/8 sets.

Proof. Let C be any subset of S that covers X = ∪e∈EUe.

Definition 2 Say a vertex w ∈ V is good |{s ∈ Σ : Sw,s ∈ C}| ≤ k/2, otherwise say w is bad. Say an edge
e = (u, v) ∈ E is good if both u and v are good, otherwise say e is bad.

A bad vertex contributes many sets to C. Our strategy is to show that there are many bad edges, thus there
are many bad vertices.

• There are many bad edges

We randomly construct a labelling σ : V → Σ such that a good edge will have its corresponding constraint
satisfied with reasonably high probability. However, the soundness in the construction of G ensures that
few constraints can be satisfied. Thus, there are few good edges.

More precisely, construct σ randomly by setting σ(w) to be a label chosen uniformly at random from
{s : Sw,s ∈ C}. If this set is empty, then set σ(w) to be an arbitrary label. Do this independently for each
w ∈ V .

Let e = (u, v) be a good edge. Because C covers Ue and because at most k sets of the form Su,a or
Sv,b are in C then they must contain some complementary pair. That is, there are labels a, b ∈ Σ such

Su,a, Sv,b ∈ C and for the sets Ceπ(a) ⊆ Su,a and C
e

b ⊆ Sv,b we have π(a) = b. We then see

Pr[πe is satisfied by σ] ≥ Pr[σ(u) = a and σ(v) = b] ≥ 4/k2.

On the other hand, by the soundness in Theorem 2

(# of good edges) · 4

k2
≤ E[# of constraints satisfied by σ] ≤ 2−` · |E|.

Lecture 31: Set Cover Hardness 31-5

By our choice of k and ` we have k2/4 · 2−` ≤ 1/2 so at most half of the edges are good. Thus, there are
at least |E|/2 bad edges.

• So there are many bad vertices

We know that G is a regular graph (c.f. Theorem 2), so say |δ(w)| = D for each w ∈ V (which also means
D · |V | = 2 · |E|).
Let bE be the number of bad edges and bV be the number of bad vertices. Finally, for each edge e ∈ E
let b(e) be the number of bad endpoints of E. We have:

|E|/2 ≤ bE ≤
∑
e∈E

b(e) = D · bV

so bV ≥ |E|/(2D) = |V |/4.

• Therefore C is big

For each bad vertex w, we count at least k/2 sets in C of the form Sw,s. Therefore,

|C| ≥ k/2 · bv ≥ k · |V |/8.

31.2.5 Wrapping Up

We saw in the completeness case that there is a solution using only |V | sets and in the soundness case that no
solution uses fewer than k · |V |/8 sets. Therefore, we cannot approximate the problem better than a factor of
k/8 (under the complexity theory assumption described below). We want to state this in terms of the new Set
Cover instance size. We have |X| = nO(log logn) and k/8 = Θ(log n · log log n), so k/8 = O(log |X|). This is
what we wanted to show.

The running time of the reduction is nO(log logn) which is not polynomial. Furthermore, the reduction is only
guaranteed to have the above soundness properties with probability at least 1/2 (the completeness always holds
if the random construction from Lemma 2 does not have the desired properties).

So, if we can approximate Set Cover within a ratio better than k/8, then we can randomly decide every
L ∈ NP with an algorithm that runs in nO(log logn) time, always accepts a yes instance, and rejects every no
instance with probability at least 1/2. This is done simply by applying this randomized reduction from L to
Set Cover and then using the Set Cover approximation to decide between yes and no instances by seeing
if it found fewer than k · |V |/8 sets or not.

This shows that there is some constant c > 0 such that there is no (c · ln |X|)-approximation for Set Cover
unless NP ⊆ co-RTIME(nO(log logn)). A nice exercise in complexity theory is to show that NP ⊆ co-RP
implies NP ⊆ ZPP and the same arguments work for these nO(log logn)-time analogs. So, in fact we have just
shown that no (c · ln |X|)-approximation exists unless NP ⊆ ZPTIME(nO(log logn)).

Finally, if we use the deterministic construction stated in Lemma 1 then the running time of the reduction
from L to Set Cover is deterministic so it would establish that there is no (c · ln |X|)-approximation unless
NP ⊆ DTIME(nO(log logn)).

31-6 Lecture 31: Set Cover Hardness

31.3 Discussion

Lund and Yannakakis [LY94] provide the first logarithmic hardness for Set Cover, proving there is no
(log2 n)/4-approximation unless NP ⊆ DTIME(nO(polylogn)) where polylogn means logd n for some constant
d. They also show a slightly tighter bound of (log2 n)/2 assuming NP 6⊆ ZPTIME(nO(polylogn)).

Feige sharpened this result, proving that for any constant c < 1 that there is no (c · lnn)-approximation for Set
Cover unless NP ⊆ DTIME(nO(log logn)) [F98]. This is tight even up to the leading constant because the
greedy algorithm is a lnn+O(1) approximation. Feige’s work, like the reduction in this lecture, critically relies
on the hardness of Label Cover that was ultimately proven by Raz [R98]. Dinur and Steurer further build
on this work by providing a better bound on the hardness of Label Cover in a critical case which, ultimately,
leads to the same (c · lnn)-hardness for any constant c < 1 under the standard assumption P 6= NP [DS14].

References

DS14 I. Dinur and D. Steurer, An analytic approach to parallel repetition, In Proceedings of STOC, 2014.

F98 U. Feige, A Threhold of lnn for approximating set cover, Journal of the ACM, 45(4):634–652, 1998.

LY94 C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, Journal of the
ACM, 41(5):960–981, 1994.

R98 R. Raz, A parallel repetition theorem, SIAM Journal on Computing, 27(3):763–803, 1998.

	Set Cover Hardness
	Label Cover

	From Label Cover to Set Cover
	A Helpful Gadget
	The Construction
	Completeness
	Soundness
	Wrapping Up

	Discussion

