
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 31 (Nov 26): Maximum Independent Set Hardness
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

31.1 Constant-Factor Hardness

Our ultimate goal will be to show that there is some constant δ such that there is no 1/nδ approximation for
Maximum Independent Set unless P = NP where n is the number of nodes in the graph. We start by
proving a weaker result, after one important definition.

Definition 1 Consider an (r(n), q(n))-restricted verifier V . For b ∈ {0, 1}r(n), y ∈ {0, 1}q(n) and a proof string
π, say (b, y) agrees with π if πibj = yj for each 1 ≤ j ≤ q(n) where ib1, . . . , i

b
q(n) are the indices of π that will be

queried when V is supplied with random bit string b.

For b, b′ ∈ {0, 1}r(n), y, y′ ∈ {0, 1}q(n), say that (b, y) agrees with (b′, y′) if there is some proof string π such that
both (b, y) and (b′, y′) agree with π.

In other words, we think of the tuple (b, y) as being an actual assignment to the proof string bits that will be
queried when V is given random string b. Saying (b, y) agrees with a proof string π simply means that the
contents of π at the queried bits are exactly the bits in the y-vector.

Important Observation
Note that if S is a subset of pairs (b, y) such that every two agree according to Definition 1, then there is some
proof string π such that every (b, i) ∈ S agrees with π. In particular, the string π defined by

πi =

{
yibj if some (b, y) ∈ S is such that ibj = i for some j

0 otherwise

The first part of the definition of π is independent of the choice (b, y) ∈ S (if there is more than one) because
no two (b, y), (b′, y′) ∈ S disagree on any bit of the proof. The value 0 in the second part of the definition is
arbitrary.

Theorem 1 For any c > 1/2, there is no c-approximation for Maximum Independent Set unless P = NP.

Recall that in assignment 1 you were asked to show that if there is an α-approximation for some constant α, then
there is in fact a

√
α-approximation. A corollary of Theorem 1 is that there is no constant-factor approximation

for the Maximum Independent Set problem unless P = NP, otherwise we could apply the above “α⇒
√
α”

result a constant number of times to this constant-factor approximation to get a c′-approximation for some
c′ > 1/2.

Proof. Let L ∈ NP and, by the PCP Theorem, let V be a (r · log2 n, q)-restricted verifier with completeness 1
and soundness 1/2 for L where r, q are constants.

In polynomial time, we will reduce an instance of the decision problem x ∈ L? to a graph G = (U,E) with
|U | = |x|r · 2q such that:

31-1

31-2 Lecture 31: Maximum Independent Set Hardness

• Completeness: If x ∈ L then G has an independent set of size |x|.

• Soundness: If x 6∈ L, then the largest independent set of G has size at most |x|/2.

This |x| vs. |x|/2 hardness gap shows we cannot approximate Maximum Independent Set within any factor
better than 1/2.

The reduction is quite simple. We let

U = {vb,y : b ∈ {0, 1}r·log2 |x|, y ∈ {0, 1}q}.

Here, it is useful to associate vb,y ∈ U with the random bit string b and y = (y1, y2, . . . , yq) with a particular
setting of the bits at positions ib1, i

b
2, . . . , i

b
q of the proof string that will be queried by verifier V when supplied

with random bit string b.

Let Ugood ⊆ U be the nodes vb,y such that V (x, b, π) = accept for some proof string π that agrees with (b, y).
This is the same as saying V (x, b, π) = accept for any proof string π that agrees with (b, y) because the
computation of V (x, b, π) is not affected by the bits of π it does not query.

The edges of G are defined as follows:

E = {(vb,y, vb′,y′) : |{vb,y, vb′,y′} ∩ Ugood| ≤ 1 or (b, y) does not agree with (b′, y′)}.

Note that |U | = |x|r ·2q (as promised) which is polynomial in |x|. Furthermore, we can construct E in polynomial
time by simulating V (in polynomial time) on each (b, y) pair to see if vb,y ∈ Ugood. The predicate (b, y) agrees
with (b′, y′) can also be checked efficiently, simply see if they try to assign different values to the same position
of the proof string.

Completeness
We claim that G has an independent set of size |x|r. To see this, let π be a proof string such that V (x, b, π) =
accept for any random bit string b. Consider

W = {vb,y : (b, y) agrees with π}

Clearly for every b there is precisely one y such that (b, y) agrees with π, so |W | = 2r·log2 |x| = |x|r.

Furthermore, we claim that W is an independent set. Consider any two vb,y, vb′,y′ ∈W . Both are in Ugood and
agree with each other because V (x, b, π) = V (x, b′, π) = accept and π agrees with both (b, y) and (b′, y′). So,
(vb,y, vb′,y′) 6∈ E.

Soundness
Consider any independent set W ′ of G. If W ′ − Ugood 6= ∅ then |W ′| = 1 because there is an edge between vb,y
and every other vertex in U if vb,y 6∈ Ugood. So, we assume that W ′ ⊆ Ugood.

For each b ∈ {0, 1}r·log2 n there is at most one y ∈ {0, 1}q such that vb,y ∈W ′ because (b, y) does not agree with
(b, y′) for any y 6= y′. Let

BW ′ = {b : vb,y ∈W ′ for some y}

and note |BW ′ | = |W ′|.

Now, any two (b, y), (b′, y′) such that vb,y, vb′,y′ ∈W ′ must agree (because W ′ is an independent set) so, by the
important observation preceding the theorem statement, there is some proof string π′ that agrees with every
(b, y) such that vb,y ∈W ′.

Lecture 31: Maximum Independent Set Hardness 31-3

Let B′ = {b : V (x, b, π′) = accept}. We have Pr[V (x, b, π′) = accept] ≤ 1/2 (when randomly choosing b),
which means |B′| ≤ |x|r/2 (i.e. B′ consists of at most half of the possible random bit strings).

Finally, we have BW ′ ⊆ B′ because W ′ ⊆ Ugood (so every string in BW ′ causes V to accept π′). This means

|W ′| = |BW ′ | ≤ |B′| ≤ |x|r/2.

Polynomial Hardness

We now focus on proving the stronger statement that there is no 1/nδ-approximation for some constant δ > 0.
Our starting point is yet another alternative characterization of NP.

Theorem 2 There are constants r′, q′ such that NP = PCP1,1/n(r′ · log2 n, q
′ · log2 n).

We will prove this in the next section, but let’s see how it can be used to get polynomial hardness for maximum
independent set.

Theorem 3 There is a constant δ > 0 such there is no approximation algorithm with approximation guarantee
better than 1/nδ unless P = NP.

Proof. Start with the (r′ · log2 n, q
′ · log2 n)-restricted verifier V ′ for a language L in NP with completeness 1

and soundness 1/n (as promised by Theorem 2).

From here, use the exact same reduction as in the proof of Theorem 1 to get a graph G = (U,E) where
U = {vb,y : b ∈ {0, 1}r′·log2 n, y ∈ {0, 1}q′·log2 n} and

E = {(vb,y, vb′,y′) : |{vb,y, vb′,y′} ∩ Ugood| ≤ 1 or (b, y) does not agree with (b′, y′)}.

In this case, we have |U | = 2r
′·log2 |x| · 2q′·log2 |x| = |x|r′+q′ , which is polynomial in |x|. Overall, the construction

of this graph G still takes poly(|x|) time.

We sketch the essential differences in the analysis between this reduction and the reduction in Theorem 1.

Completeness
Defining W in the same way again yields an independent set of size |x|r.

Soundness
For any independent set W ′, we define BW ′ and B′ as in the proof of Theorem 1. The main difference is that
|B′| is only a 1/|x|-fraction of all possible random bit strings because the soundness in the verifier V ′ is the
much smaller value 1/|x|. This allows us to conclude the stronger statement

|W ′| = |BW ′ | ≤ |B′| ≤ |x|r/|x| = |x|r−1.

Putting It Together
This introduces an |x|r vs. |x|r−1 gap, so there is no capproximation for any c > |x|r−1/|x|r = 1/|x|. However,

31-4 Lecture 31: Maximum Independent Set Hardness

we want to state this hardness in terms of the new graph G, which has n := |U | = |x|r′+q′ vertices. Let
δ = 1/(r′+q′) and note that δ is a constant. Then |x| = nδ, so we cannot approximate Maximum Independent
Set better than 1/nδ for this constant δ.

31.2 Using Expanders to Amplify Hardness

In this section, we prove Theorem 2. Actually, we only prove the following direction.

Theorem 4 For some constants q′, r′, we have NP ⊆ PCP1,1/n(r′ · log2 n, q
′ · log2 n).

The other direction is simple and is just briefly sketched here. Since the number of queried bits is O(log n),
then we can still use such a verifier to produce, in polynomial time, an instance of SAT that is satisfiable in
the completeness case and is not satisfiable in the soundness case using essentially the same reduction from the
PCP Theorem to an instance of Max-qSAT from the last lecture. This gives a poly-time reduction from any
language L ∈ PCP1,1/n(r′ · log2 n, q

′ · log2 n) to SAT, so L ∈ NP.

Before proving Theorem 4, we briefly discuss its intuition. If we have a verifier as in the PCP Theorem, we can
reduce the soundness from 1/2 to 1/n simply by executing log2 n sequential repetitions of V on the supplied
proof π, rejecting if even one repetition caused V to reject. Here, we use a new sequence of r · log2 n random
bits.

In the completeness case, V accepts some π with probability 1 so this same π will cause V to accept in each of
these log2 n repetitions. In the soundness case, V accepts any π only with probability at most 1/2 so k := log2 n
sequential iterations will have all runs accepting π with probability only 1/2k = 1/n. This is almost what we
need, as the number of queried bits will be q · k = q · log2 n.

Unfortunately, running the reduction in Theorem 3 from a verifier that reads Θ(log2 n) random bits will produce

a graph G = (U,E) with |U | = |x|Θ(log2 |x|) = |x|Θ(log |x|) which is not a polynomial-time reduction! To reduce
the number of random bits to only logarithmic while maintaining 1/n soundness requires one additional tool.

Theorem 5 (and Definition) There is some constant d such that for every n, there is graph Gn = (Un, En)
(with, perhaps, parallel edges) such that

• Every vertex of Gn has degree exactly d.

• For every S ⊆ Un with |S| ≤ n/2, |δ(S)| ≥ |S|.

Furthermore, Gn can be constructed in poly(n)-time.

Such graphs are called expander graphs (see [HLW06] for a more general definition).

These are rather remarkable graphs. One one hand they are very sparse since each vertex has constant degree.
On the other hand, they are very well connected in the sense that in each cut of the graph where S is the
smaller side, the number of edges crossing S is a constant fraction of the number of edges contained in S. In
some sense, this means a random walk cannot stay contained in a small set S for very long.

Let’s formalize this. Say that a length k random walk in a graph G is a sequence of nodes v1, v1, . . . , vk generated
according to the following random process.

• The first vertex v1 is chosen uniformly at random from the nodes of G.

Lecture 31: Maximum Independent Set Hardness 31-5

• Iteratively for each 2 ≤ i ≤ k, we choose vi uniformly at random from the neighbours of vi−1.

A random walk in an expander has nice properties that seem similar to simply independently sampling each vi
from the set of all nodes. That is, if |S| ≤ n/2 then randomly choosing the vi uniformly among all nodes (not
just neighbours of the previous nodes) will have all vi ∈ S with probability at most 1/2k. In an expander, since
a constant-fraction of the edges with an endpoint in S leave S then one would hope that we would see similar
bounds on the probability that a random walk stays in S. We do.

Theorem 6 (Expander Walks) Consider a random walk v1, . . . , vk in one of the Gn expander graphs defined
above. For any subset S ⊆ Un with |S| ≤ n/2, we have

Pr[vi ∈ S for each 1 ≤ i ≤ k] ≤ 2−k/c

where c is some universal constant.

Expander walks are precisely what we need. We will “overlay” an expander on the set of random bit strings and
perform an random walk of length c · log2 n in this graph, running V with every random bit string/vertex we
see. This will query O(log n) positions of the proof string O(1) for each of the O(log n) random bit strings seen,
it will stay within the “bad” set of accepting random bit strings with probability at most 1/n in the soundness
case, but the number of random bits required to do this walk is only O(log n) as opposed to O(log2 n) because
each step after sampling the first vertex v1 requires only log2 d bits.

Proof of Theorem 4. Let L be a language in NP. By the PCP Theorem, there is an (r · log2 n, q)-restricted
verifier V for L with completeness 1 and soundness 1/2 where r, q are constants. We use V to get an (r′ ·
log2 n, q

′ · log2 n)-restricted verifier V ′ for L with completeness 1 and soundness 1/n where r′, q′ are constants.

Let N = |x|r be the number of possible random bit strings of length r · log2 |x|. Construct the expander graph
GN = (UN , EN) from Theorem 5, which can be done in poly(|x|) time. We identify UN with the set {0, 1}r·log2 |x|

in any arbitrary way, so it is useful to think of UN as the set of possible random bit strings of length r · log2 |x|.

Let c be the constant from Theorem 6 and let k = c · log2 |x|. Our final verifier V ′ simply runs the verifier
V with k different random bit strings. But the random bit strings are not chosen independently in each run.
Rather, we let b1, . . . , bk ∈ UN be random bit strings that we construct from a length k random walk in GN :
choose b1 ∈ UN uniformly at random and then for each i ≥ 2 we choose bi randomly among the d neighbours
of bi−1.

Verifier V ′ accepts the proof π of the statement x ∈ L if and only if V (x, bi, π) = accept for each 1 ≤ i ≤ k.

Completeness
If x ∈ L, then there is some π such that V (x, b, π) = accept for every random bit string b. Then with this
same proof string π, we will have V (x, bi, π) for any sequence of random bit strings b1, . . . , bk generated by the
random walk on GN , so V ′ accepts π with probability 1.

Soundness
Consider any proof string π and let Ubad = {b ∈ UN : V (x, b, π) = accept}. By the soundness of V ,
|Ubad| ≤ |UN |/2. By Theorem 6, the probability that bi ∈ Ubad for each bi generated in length k random
walk is at most 2−k/c = 1/|x|. That is, V ′ accepts π with probability at most 1/|x|.

31-6 Lecture 31: Maximum Independent Set Hardness

Size of the Parameters
The total number of bits of π that are queries is exactly k · q = c · q · log2 |x|, so we let q′ = c · q which is
a constant. The random walk can be generated using only O(log |x|) random bits. In particular, r · log2 |x|
random bits are used to sample the first vertex/bit string b1. Then since bi is a random neighbour of bi−1

for i ≥ 2, we can sample bi given bi−1 using only log2 d bits. Overall, the number of bits used is at most
r · log2 n+ (k − 1) · log2 d ≤ (r + c · log2 d) · log2 n so we let r′ = r + c · log2 n which is also constant.

We have just shown V ′ is an (r′ · log2 n, q
′ · log2 n)-restricted verifier for L with completeness 1 and soundness

1/n. Also, it is easy to see that V ′ runs in time poly(|x|). Therefore, L ∈ PCP1,1/n(r′ · log2 n, q
′ · log2 n).

31.3 Discussion

The first inapproximability results for the Maximum Independent Set problem predate the PCP theo-
rem [F+91]. H̊astad shows a much stronger result, for any constant ε > 0 there is no 1/n1−ε-approximation
unless NP = ZPP [H99] (ZPP is the class of languages that can be decided with a randomized algorithm has
polynomial expected running time and always returns the correct solution). This was refined by Zuckerman,
who proved the same hardness bound under the more standard assumption P 6= NP [Z07]. Under even stronger
(but still plausible) assumptions, Khot and Ponnuswami show that in fact it is hard to approximate better than

(2log3/4+ε′ (n))/n for any constant ε′ > 0, which is asymptotically smaller than 1/n1−ε for any constant ε > 0.

On the positive side, Feige showed that we can approximate the Maximum Independent Set problem within
a factor of Ω(log3 n/(n · (log log n)2)) [F04], which is slightly better than the trivial 1/n-approximation that
outputs a single vertex.

As suggested by these notes, expander graphs are very useful in proving hardness-of-approximation results.
In fact, they play a pivotal role in Dinur’s simplified proof of the PCP Theorem itself [D07]. An excellent
introduction can be found in an article by Hoory, Linial, and Wigderson [HLW06], and also in the text by Arora
and Barak.

References

D07 I. Dinur, The PCP theorem by gap amplification, Journal of the ACM, 54(3):12, 2007.

F04 U. Feige, Approximating maximum clique by removing subgraphs, SIAM Journal on Discrete Mathematics,
18(2):219–225, 2004.

F+91 U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique is almost NP-complete,
In Proceedings of FOCS, 1991.

H99 J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathematica, 182:105–142, 1999.

HLW06 S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bulletin of the American
Mathematical Society, 43:439–561, 2006.

Z07 D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic number,
Theory of Computing, 3:103–128, 2007.

	Constant-Factor Hardness
	Using Expanders to Amplify Hardness
	Discussion

