
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 29 (Nov 17 & 19): Bounded-Degree Spanning Trees
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

29.1 The Spanning Tree Polytope

Let G = (V,E) be an undirected graph. Consider the following polytope over variables xe, e ∈ E. For a set
S ⊆ V we let E(S) = {(u, v) ∈ E : u, v ∈ S} and for a set F ⊆ E we let x(F ) =

∑
e∈F xe.

x(E(S)) ≤ |S| − 1 for each S ⊆ V, |S| ≥ 2
x(E) = |V | − 1

x ≥ 0
(LP-Span)

We show how to separate over the constraints of this polytope and that the extreme points are precisely the
{0, 1}-integer solutions corresponding to spanning trees.

Lemma 1 There is a polynomial-time separation oracle for the constraints of (LP-Span).

Proof. Let x be a proposed solution such that x ≥ 0 and x(E(V )) = |V | − 1 (i.e. we checked them already).

Try all pairs of vertices u, v ∈ V . The idea is that we are guessing u ∈ S, v 6∈ S for some set S ⊆ V whose
corresponding LP constraint is violated. Consider the directed graph H(v) = (V,E′) with edge capacities
ze, e ∈ E′ where E′ consists of the following directed edges.

• For each e = (a, b) edge in the original graph G, add both directed copies (a, b), (b, a) to E′ each and set
z(a,b) = z(b,a) = xe/2.

• For each a ∈ V − {u, v}, add the arc (a, v) with capacity 1 and the arc (u, a) with capacity x(δ(a)).

Consider any u− v cut S in H. The capacity of arcs exiting S is

z(δout(S)) = |S| − 1 +
∑

a∈V−S
x(δ(a))/2 +

∑
e∈δ(S)

xe/2.

The latter two sums count each e ∈ E(V )−E(S) twice: if e ∈ E(V −S) then it will be counted twice in the first
sum and if e ∈ δ(S) it will be counted exactly once in the first sum and exactly once in the second. Therefore,

z(δout(S)) = |S| − 1 + x(E(V ))− x(E(S)) = (|V | − 1) + (|S| − 1)− x(E(S)).

Therefore, the minimum-capacity u− v cut in H has capacity < |V | − 1 if and only if some violated constraint
contains u and excludes v. Running this over all pairs u, v ∈ V will find a violated constraint if there is any.

The proof used n · (n − 1) min-cut computations. It can be reduced to at most 2n − 2 by only fixing one
particular u, guessing the corresponding v 6= u, and trying to find the minimum u − v and v − u cuts in the
corresponding graphs.
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Lemma 2 The feasible integer solutions are precisely the {0, 1} solutions corresponding to spanning trees of G.

Proof. Let x be a feasible integer solution. Note that x(u,v) ≤ 1 for each (u, v) ∈ E because x(E(S)) ≤ 1 is
satisfied for S = {u, v}. Let T = {e : xe = 1}.

We have |T | = x(E(V )) = |V | − 1. Furthermore, T cannot contain a cycle because if T contained a cycle with
vertex set C, then we must have x(E(C)) ≥ n which contradicts feasibility of x. Any graph on n nodes that
has n− 1 edges and does not contain a cycle is a spanning tree, so T is a spanning tree.

Conversely, any spanning tree T contains exactly n − 1 edges and for each S ⊆ V , at most |S| − 1 edges of T
have both endpoints in S (otherwise there is a cycle contained in S) so the {0, 1} integer point corresponding
to T is a point in (LP-Span).

29.1.1 Integrality of Extreme Points

Before proving that extreme points are integral, we introduce more important notation and concepts.

For a set of edges F ⊆ E, let χ(F ) ∈ RE be the {0, 1} indicator vector for F . That is, χ(F )e = 1 for e ∈ F and
χ(F )e = 0 for e 6∈ F .

Say any two sets A,B ⊆ V cross if A ∩ B 6= ∅ but neither is a subset of the other. A family L of subsets of V
is called laminar no two of its subsets cross, i.e. for any A,B ∈ L we have either A ∩B = ∅, A ⊆ B or B ⊆ A.

Lemma 3 Let L be a laminar family of subsets of V such that |A| ≥ 2 for any A ∈ L. Then |L| ≤ |V | − 1.

Proof. Assignment 5.

Theorem 1 Any extreme point of (LP-Span) is integral.

Proof. Let x be an extreme point. It is easy to see that x is an extreme point if and only if the corresponding
solution we get after deleting e ∈ E with xe = 0 is an extreme point, so we assume xe > 0 for each e ∈ E.

We show that in this case it must be that |E| ≤ |V | − 1. If so, then we are done because:

• x(E(V )) = |V | − 1

• xe ≤ 1 for each e ∈ E

So if |E| ≤ |V | − 1 then we must have xe = 1 for each e ∈ E.

By the properties of extreme points, |E| is equal to the rank of the collection of vectors M = {χ(E(S)) :
x(E(S)) = |S|−1}. We show that there is a laminar family L consisting only of S with |S| ≥ 2 and x(S) = |S|−1
such that the vectors χ(E(S)), S ∈ L form a basis for the space spanned by all tight constraints (i.e. the space
spanned by M). If so, then by Lemma 3 we have

|E| = rank(M) = rank ({χ(E(S)) : S ∈ L}) = |L| ≤ |V | − 1

which completes the proof.

Let L be the largest laminar collection of subsets of V such that χ(E(S)), S ∈ L are linearly independent. If
|L| < |E| then there is some R ⊆ V, |R| ≥ 2 such that x(R) = |R| − 1 but χ(R) 6∈ span{χ(E(S)) : S ∈ L}.
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Because R cannot be added to L, we know that R crosses S ∈ L. Choose such an R that crosses the fewest sets
in L and let S be any set in L such that R and S cross.

Let F ′ denote the edges with one endpoint in S −R and the other in R− S. Then we have

|R| − 1 + |S| − 1 = x(E(R)) + x(E(S)) (the corresponding constraints are tight)
= x(E(R ∩ S)) + x(E(R ∪ S))− x(F ′) (count how many times each edge contributes to each side)
≤ |R ∩ S| − 1 + |R ∪ S| − 1 (x is feasible)
= |R| − 1 + |S| − 1

Therefore all inequalities hold with equality. In particular:

• x(E(S ∪R)) = |S ∪R| − 1

• x(E(S ∩R)) = |S ∩R| − 1

• x(F ′) = 0

(if |S ∩R| = 1 then just ignore any term involving it and the proof works fine)

Because xe > 0 for each e ∈ E, then F ′ = ∅ which means χ(E(R)) + χ(E(S)) = χ(E(R ∪ S)) + χ(E(R ∩ S)).
Both R∪S and R∩S can only cross sets in L that R crossed. Since both do not cross S, then both cross fewer
sets in L than R.

Finally, it cannot be that both χ(E(R ∪ S)), χ(E(R ∩ S)) ∈ span{χ(E(S′)) : S′ ∈ L}, otherwise χ(E(R)) =
χ(E(R∪S))+χ(E(R∩S))−χ(E(S)) ∈ span{χ(E(S′)) : S′ ∈ L}. Therefore, at least one of R′ ∈ {R∩S,R∪S}
is such that χ(E(R′)) 6∈ span{χ(E(S′)) : S′ ∈ L}, R′ crosses fewer sets of L than R, and the constraint for R′

is tight. This contradicts our choice of R.

29.2 The Minimum Bounded-Degree Spanning Tree Problem

Now we tackle the main problem. Given a graph G = (V,E) with edge costs ce ≥ 0, e ∈ E and integer vertex
bound Bv ≥ 1, v ∈ V , the goal is to find the cheapest spanning tree T of G such that |δ(v) ∩ T | ≤ Bv for each
v ∈ V . It is NP-hard to determine if there is a feasible solution even when Bv = 2 for all v ∈ V because this is
precisely the problem of determining if G has a Hamiltonian path.

We will see the next best thing: a polynomial-time algorithm that either (correctly) states there is no such
tree or it returns a spanning tree T with |δ(v) ∩ T | ≤ Bv + 1. Furthermore, if there is in fact a spanning tree
satisfying the original degree bounds then the cost of the returned tree T is at most OPT . We are not losing
anything in the objective function value here, just the degree bounds!

We consider the following linear programming relaxation. Here, x(δ(v)) denotes
∑
e∈δ(v) xe. The relaxation is

slightly more general in that we only have variables for a subset of edges F ⊆ E and degree constraints for a
subset of vertices W ⊆ V .

minimize :
∑
e∈F

ce · xe

subject to : x(F (S)) ≤ |S| − 1 for each S ⊆ V, |S| ≥ 2
x(F (V )) = |V | − 1
x(δ(v)) ≤ Bv for each v ∈W

x ≥ 0

(LP-BDST(W,F ))
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The algorithm we consider is an iterative relaxation algorithm. It iterates the process of solving the LP, deleting
edges with x-value 0, and dropping some constraints until the set of feasible solutions is given by the normal
spanning tree LP (LP-Span).

Algorithm 1 Minimum Bounded-Degree Spanning Tree Approximation

if (LP-BDST(V,E)) is infeasible then
return no solution

end if
F ← E
W ← V
while W 6= ∅ do

Solve (LP-BDST(W,F )) to get an optimum extreme point x
F ← {e ∈ F : xe > 0}
W ← {v ∈ V : |δ(v) ∩ F | ≥ Bv + 2}

end while
return An optimum extreme point solution to (LP-BDST(∅, F ))

If Algorithm 1 returns no solution then clearly there is none as the {0, 1} solution corresponding to the optimal
degree-bounded spanning tree would be feasible. Next, since the main loop only drops constraints and edges
with x-value 0 then the cost

∑
e∈F ce · xe does not increase over the iterations. Since we only drop degree

constraints for vertices v with |δ(v) ∩ F | ≤ Bv + 1, then any resulting integer solution must satisfy this slightly
relaxed degree bound. Finally, the feasible solutions of (LP-BDST(∅, F )) are precisely the feasible solutions of
(LP-Span) for the graph G = (V, F ).

By Theorem 1, the fact that the optimum solution LP solution does not increase over the iterations, and the
fact that |δ(v) ∩ F | ≤ Bv + 1, the last step returns an integer solution corresponding to a spanning tree with
cost at most the optimum of (LP-BDST(V,E)) that violates each degree bound by at most +1.

All that is left to prove is that each iteration of the algorithm makes progress.

Theorem 2 Consider an extreme point x for (LP-BDST(W,F )) such that xe > 0 for each e ∈ F . If W 6= ∅,
then there is some v ∈W such that |δ(v) ∩ F | ≤ Bv + 1.

Proof. By way of contradiction, suppose |δ(v) ∩ F | ≥ Bv + 2 for every v ∈ W . Using essentially the same
arguments as in the proof of Theorem 1, we find a laminar collection L of subsets of V such |S| ≥ 2 for each
S ∈ L and such that the corresponding vectors form a basis for {χ(E(S)) : x(E(S)) = |S| − 1}. Then we find
U ⊆W whose corresponding degree constraints are tight such that the vectors

{χ(F (S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ U} (29.1)

form a basis for the space spanned by tight constraints. This can be done by greedily adding vertices u ∈ W
such that x(δ(u)) = Bv to U while ensuring the vectors (29.1) remain linearly independent.

Note that have |L| + |U | = |F | by the characterization of extreme points. Now, if U = ∅ then x is an extreme
point of (LP-Span) for the graph G = (V, F ), so it is integral already by Theorem 1 and it is clear that integer
solutions to (LP-BDST(W,F )) must satisfy the degree bounds for nodes in W without any violation. So, we
now assume U 6= ∅.

We will assign a charge of 1 to each e ∈ F and distribute some of this charge to sets in L and vertices in W . We
will count the amount of charge that is redistributed in two ways. On one hand, we see that strictly less than
|F | units of charge is sent to these sets. On the other hand, we will see that at least |F | units of charge were
collected by L and W . This is a contradiction, so it must be that some v ∈W satisfies |δ(v) ∩ F | ≤ Bv + 1.
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For each e = (u, v) ∈ F , send xe units of charge to the smallest S ∈ L with u, v ∈ S (if there is none, then do
not distribute this charge). Also, send (1− xe)/2 units of charge to each of u and v that lies in U . Note that e
sends out at most 1 unit of charge, so the total charge sent out by all edges is at most |F | (we will soon see it
is, in fact, strictly less than |F |).

Next we show that each v ∈ U and each S ∈ L collect at least one unit of charge. To start, consider some
v ∈ U . Then the charge that v collects is precisely∑

e∈δ(v)∩F

1− xe
2

=
|δ(v) ∩ F | −Bv

2
≥ 1

where the equality is because the degree constraint for u ∈ W is tight and the inequality is because we are
assuming |δ(v) ∩ F | ≥ Bv + 2.

Now consider some S ∈ L. Let R1, R2, . . . , Rk denote the maximal subsets of S in L. That is, each Ri ∈ L is a
proper subset of S and no other R′ ∈ L satisfies Ri ( R′ ( S. Then the total charge collected by L is precisely

x(F (S))−
k∑
i=1

x(F (Ri)) = (|S| − 1)−
k∑
i=1

(|Ri| − 1).

We have |R1|+ . . .+ |Rk| ≤ |S| so the last expression is a nonnegative integer. Furthermore, we have χ(F (S)) 6=∑
i χ(F (Ri)) (by linear independence) so there is some edge e ∈ F in F (S) but not in any F (Ri). Thus, S

collects a positive integer amount of charge, meaning it collects at least 1 charge.

So far, we have shown that the edges distribute at most |F | units of charge and that L and U collectively receive
at least |L|+ |U | = |F | units of charge. We will show that some edge did not distribute exactly 1 unit of charge,
so in fact the total charge that was distributed is strictly less than |F |, a contradiction.

First, two simple cases:

• If V 6∈ L then there is some e ∈ F that is not contained in any S ∈ L so the charge xe > 0 is not
distributed.

• If there is some vertex v ∈ V − U such that xe < 1 for some e ∈ δ(v) ∩ F , then the charge (1− xe)/2 > 0
is not distributed.

Now assume that none of these happen. We also note that if xe = 1 for some e = (u, v) ∈ F then χ(E({u, v})) ∈
span{χ(E(S)) : S ∈ L} because the constraint x(E({u, v})) ≤ 1 is tight and we chose L so that the associated
vectors span {χ(E(S)) : x(E(S)) = |E| − 1}.

Putting all of this together, we have

2 · χ(E(V )) =
∑
v∈U

χ(δ(v)) +
∑

v∈V−U
χ(δ(v)) =

∑
v∈U

χ(δ(v)) +
∑

v∈V−U

∑
e∈δ(v)

χ({e}).

We just argued that each vector χ({e}) in the last sum is spanned by {χ(E(S)) : S ∈ L}. Furthermore, the
first sum in the last expression is nonzero because U 6= ∅. Therefore, we have expressed a non-zero linear
combination of the vectors {χ(δ(v)) : v ∈ U} by a linear combination of the vectors in {χ(E(S)) : S ∈ L}, which
contradicts the fact that the vectors in (29.1) are linearly independent.

The spanning tree polytope (LP-Span) was presented and proved to be integral by Edmonds [E71]. Singh and
Lau described the +1 approximation for the Minimum Degree Bounded Spanning Tree problem [SL11],
which improved over the +2 approximation by Goemans [G06]. Earlier work had considered the unweighted
problem: given degree bounds Bv determine if there is any spanning tree with these bounds. An algorithm by
Fürer and Raghavachari [FR94] will either find some spanning tree where the degree of each node v is at most
Bv + 1 or else determine there is no such tree.
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