
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 28 (Nov 14): Minimizing Makespan on Unrelated Machines
Lecturer: Zachary Friggstad Scribe: Antonio Carlos Salzvedel Furtado Junior

28.1 Minimizing Makespan on Unrelated Machines

In the problem Minimizing Makespan on Unrelated Machines, we are given a set of jobs J = {1, ..., n}
and a set of machines M = {1, ...,m}. Each job j ∈ J requires processing time pij ≥ 0 to be run on machine
i ∈M . Our objective is to find an assignment function φ : J →M that minimizes the makespan:

max
i∈M

∑
j:φ(j)=i

pij

Unlike the case of identical machines from an earlier lecture, there is probably no PTAS for this problem.

Theorem 1 For any c < 3
2 , there is no c-approximation for the Minimizing the Makespan on Unrelated

Machines, unless P = NP.

The proof is simple, but we skip it for the sake of time.

In this lecture, we saw an iterative rounding algorithm that provides a 2-approximation for this problem.
Our presentation follows the approximation for the Generalized Assignment Problem that is recorded in
[LRS11], but we focus on the makespan minimization version for simplicity.

Consider the following LP relaxation for the problem. Here γ represents the makespan and xij is a binary
variable that indicates if job j is assigned to machine i.

minimize : γ

subject to :
∑
i∈M

xij = 1 ∀j ∈ J∑
j∈J

pij · xij ≤ γ ∀i ∈M

x, γ ≥ 0

(LP-1)

Unfortunately, (LP-1) has a bad integrality gap. For example, consider the instance with jobs J = {1} and
machines M = {1, ...,m} such that pi1 = m for each i ∈ M . A feasible solution to (LP-1) with value 1 is
xi1 = 1/m for each i ∈M and γ = 1. However, the optimal solution OPT = m, since m is the processing time
any machine will take to run the only job. Despite this bad gap, (LP-1) will still be useful in our approximation
after we strengthen it a bit.

The 2-approximation follows the same basic approach as the PTAS for identical machines: “guess” the target
makespan with a binary search.

Theorem 2 There is a polynomial-time algorithm that, given a value T , either returns a solution with makespan
at most 2T or else reports there is no solution. If T ≥ OPT , it is guaranteed to find a solution with makespan
at most 2T .

28-1

28-2 Lecture 28: Minimizing Makespan on Unrelated Machines

The main tool used to prove Theorem 2 is the strengthening (Feasibility-LP) of (LP-1). Note that it is not
an LP in the strictest sense of the definition as there is no objective function; we are only interested in whether
there is a feasible solution.

∑
i∈M

xij = 1 ∀j ∈ J∑
j∈J

pij · xij ≤ T ∀i ∈M

xij = 0 if pij > T
x ≥ 0

(Feasibility-LP)

In our bad example above, (Feasibility-LP) has no feasible solution if T < m.

The rest of this lecture is devoted to proving the following statement.

Theorem 3 If (Feasibility-LP) has no feasible solution then OPT > T . If (Feasibility-LP) has a feasible
solution, then we can find an integer solution with makespan ≤ 2T in polynomial time.

Clearly when T ≥ OPT then the natural {0, 1} solution corresponding to the optimum is a feasible LP solution.
So, we focus on proving that if there is a feasible solution then we can find an assignment φ : J → M with
makespan at most 2T .

In the course of the algorithm, we will be dropping some potential j → i assignments and we will also be
removing some machines from consideration (after assigning them some jobs). So, it will be convenient to view
the problem in a more general setting.

Let G = (J ∪M,E) be a bipartite graph and, for each i ∈M , let Ti be a bound on the target running time of
machine i. Now consider the following more general feasibility LP.

∑
i:(i,j)∈E

xij = 1 ∀j ∈ J∑
j:(i,j)∈E

pij · xij ≤ Ti ∀i ∈M

x ≥ 0

(Feasibility-LP2)

Algorithm 1 is the rounding algorithm, which we call an iterative rounding algorithm because it alternates
between rounding some variables and solving the residual problem on the unrounded variables. In every step,
the reference to (Feasibility-LP2) is with respect to the current bipartite graph G in the algorithm.

Lecture 28: Minimizing Makespan on Unrelated Machines 28-3

Algorithm 1 A Relaxed Decision Procedure via Iterative Rounding

1: G← (J ∪M ; {(i, j) : pij ≤ T})
2: Ti ← T for each i ∈M
3: if (Feasibility-LP2) is infeasible then
4: return no solution
5: while J 6= ∅ do
6: Find an extreme point solution x̄ for (Feasibility-LP2)
7: Delete every edge (i, j) from E such that x̄ij = 0
8: if x̄ij = 1 for some (i, j) ∈ E then
9: assign j to i, reduce Ti by pij

10: remove j from J
11: if some i has ≤ 1 neighbour in G then
12: if i has a neighbour j in G, assign j to i and remove j from G
13: remove i from G
14: if some i has exactly 2 neighbours j, j′ and xij + xij′ ≥ 1 then
15: assign j, j′ to i
16: remove i, j, j′ from G

We will soon prove that in every iteration of the while loop that (Feasibility-LP2) has a feasible solution
and that some job or edge is removed from G in each iteration. If so, then the number of iterations is at most
|E|+ |J | so it is a polynomial-time algorithm. The following also holds.

Lemma 1 If the algorithm terminates, then assignment has makespan ≤ 2T .

Proof. Consider the load of a machine i upon termination of the algorithm. Let J∗i be the set of jobs assigned
to i over all executions of step 10, and let Ji be all jobs that are assigned to i over all iterations. Also let
T ′i =

∑
j∈J∗i

pij . We first make a few simple observations.

Observation 1: |Ji − J∗i | ≤ 2 because i is removed from G as soon as it is assigned a job j in either step 12
or step 15.

Observation 2: T ′i ≤ T because we have that pij · xij ≤ Ti and xij = 1 just when j ∈ J∗i is assigned to i.
When j is assigned to i, we reduced Ti by pij = pij · xij , so T ′i =

∑
ij pij ≤ T .

Observation 3: If |Ji − J∗i | ≤ 1, then
∑
j∈Ji

pij ≤ 2 · T . This is because Ji = J∗i means the load on machine i is

exactly T ′i ≤ T . Otherwise, the load is exactly T ′i + pij′ where j′ ∈ Ji − J∗i . Since (i, j) ∈ E, then by step 1 we
have pij′ ≤ T .

The only thing left to show is that if P ∗i − Pi = {j, j′} then the load of machine i is at most 2 · T . We bound
this as follows, where Ti and x̄ refer to the values in Algorithm 1 just before j and j′ are assigned to i in step
15. Note that this Ti value is precisely T − T ′i where T ′i =

∑
j∗∈J∗i

pij∗.∑
j′′∈Ji

pij′′ = T ′i + pij + pij′

= T ′i + (1− x̄ij) · pij + (1− x̄ij′) · pij′ + x̄ij · pij + x̄ij′ · pij′
≤ T ′i + (2− x̄ij − x̄ij′) · T + x̄ij · pij + x̄ij′ · pij′
≤ T ′i + T + Ti

= T ′i + T + (T − Ti) = 2 · T

28-4 Lecture 28: Minimizing Makespan on Unrelated Machines

Here, the first inequality is because (i, j), (i, j′) ∈ E so pij , pij′ ≤ T by step 1. The second is because x̄ is a
feasible solution to (Feasibility-LP2).

Lemma 2 In every iteration, there is a solution to (Feasibility-LP2) and |E|+ |J | strictly decreases.

Proof. We first show (Feasibility-LP2) has a feasible solution in each iteration. Initially this is true, otherwise
Algorithm 1 would have returned no solution. Now consider an iteration that starts with a feasible solution x̄
for the LP over the graph G. In the body of this loop, some edges and nodes of G are removed to get a subgraph
G′. It is easy to verify that in each case, the restriction of x̄ to the remaining edges and nodes remains feasible
for the subgraph G′, so the next iteration will have a feasible LP solution as well.

Finally, we prove that an edge or job node is always removed from G. So, suppose that at the start of an
iteration with the extreme point x̄ that 0 < x̄ij < 1 for each (i, j) ∈ E and that no i ∈ M has degree one in
G (otherwise some edge or job node will be removed from G). We will show that some i ∈ M has exactly two
neighbours j, j′ with x̄ij + x̄ij′ ≥ 1, in which case both j and j′ will be removed.

By assumption, every i ∈ M has deg(i) ≥ 2. For each j ∈ J , because
∑
i:(i,j)∈E x̄ij = 1 and no x̄ij is exactly

1, then deg(j) ≥ 2 as well. By the characterization of extreme points, we have that there are at least |E| tight
constraints under x̄. Since none of these tight are nonnegativity constraints and since there are |J |+ |M | other
constraints, then:

|J |+ |M | ≥ # tight constraints

≥ |E|

=

∑
j∈J deg(j) +

∑
i∈M deg(i)

2

≥ 2|J |+ 2|M |
2

= |J |+ |M |

So every inequality must hold with equality. In particular, every node of G has degree exactly 2. Counting
degrees on both sides of G, we have 2 · |J | = |E| = 2 · |M | so in fact |J | = |M |.

We conclude by observing

|M | = |J | =
∑
j∈J

∑
i:(i,j)∈E

x̄ij =
∑
i∈M

∑
j:(i,j)∈E

x̄ij .

In particular, there must be some i ∈ M such that
∑
j:(i,j)∈E x̄ij ≥ 1. This is what we wanted to show: some

machine i has degree 2 and
∑
j:(i,j)∈E x̄ij ≥ 1.

28.2 Discussion

A 2-approximation for this problem was first presented by Lenstra, Shmoys, and Tardos [LST90]. Currently,
the best lower and upper bounds are exactly what are presented in this lecture: the 2-approximation and the
NP-hardness of approximating better than 3/2.

Algorithm 1 can be easily modified to address a more general problem called the General Assignment
Problem. The input is much like that for the unrelated machine scheduling problem, except that the input

Lecture 28: Minimizing Makespan on Unrelated Machines 28-5

also includes running time bounds Ti for each machine i and a costs cij for every potential j → i assignment.
The goal is to find a minimum c-cost assignment φ : J →M such that no machine i ∈M is assigned a running
time load of more than Ti. A modification of Algorithm 1 (see [LRS11] for details) will either find a solution
with cost at most OPT (if there is a feasible solution) where each machine i has running time at most 2 · Ti.
Such an algorithm was initially presented in [ST93].

It seems we can do more in an interesting special case. Consider an instance of Minimizing Makespan
on Unrelated Machines where each job j can only be processed by some machines, but it has the same
processing time on each of these machines. That is, pij ∈ {pj ,∞} for each j ∈ J, i ∈ M . Svensson shows that
for any constant ε > 0, we can compute a value v∗ such that OPT ≤ v∗ ≤ (33/17 + ε) ·OPT ≈ 1.9412 ·OPT in
polynomial time [S11]. This is accomplished through rounding a (feasibility) LP relaxation that can be solved
with a (1 + ε)-factor in polynomial time, thus bounding the “integrality gap”, but the rounding algorithm itself
takes exponential time. Such an algorithm that approximates the optimum solution value without producing
a corresponding feasible solution is sometimes called an estimation algorithm. It would be interesting to see a
polynomial-time approximation algorithm for this case that actually produces a feasible solution with makespan
within some constant factor c < 2 of the optimum.

References

LRS11 L. C. Lau, , R. Ravi, and M. Singh. Iterative methods in combinatorial optimization. Cambridge University
Press, 2011.

LST90 J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated parallel
machines. Mathematical Programming, 46:259–271, 1990.

ST93 D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment problem.
Mathematical Programming, 62:461–474, 1993.

S11 O. Svensson. Santa Claus schedules jobs on unrelated machines. In Proceedings of STOC, 2011.

