
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 32 (Dec 1 & 3): H̊astad’s Max-2Lin(3) Hardness
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

32.1 Hardness of Max-2Lin(3)

Our final lectures cover the hardness of Max-2Lin(3), in which we are given linear constraints over integers
modulo 2 where each constraint only involves three variables. Naturally, the goal is to satisfy as many constraints
as possible.

——
New Notation
We will be talking a lot about bits and boolean functions. In our discussion, we will adopt the following (seeming
unusual) convention. Bits are represented by the real numbers −1 or +1 with the notion that −1 ≡ True and
1 ≡ False. An n-bit boolean function is a mapping f : {−1,+1}n → {−1,+1}.
——

Definition 1 (redefinition) In Max-2Lin(3), we are given variables over the real values {−1,+1} and a
number of constraints of the form xi ·xj ·xk = 1 or xi ·xj ·xk = −1. Furthermore, each constraint C comes with
a weight wC ≥ 0 such that

∑
C wC = 1. The goal is to assign a {−1,+1} value to each variable to maximize

the total weight of satisfied constraints.

Theorem 1 H̊astad [H01] For any constant ε > 0 and any language L ∈ NP, there is a reduction from a
instance x of the decision problem x ∈ L? to Max-2Lin(3) such that:

• Completeness: If x ∈ L, then at least a (1− ε)-weight of the constraints can be satisfied.

• Soundness: If x 6∈ L, then at most a (1/2 + ε)-weight of the constraints can be satisfied.

This is the first time we will see a hardness reduction from the PCP Theorem to a constraint satisfaction problem
that does not have perfect completeness. This is necessary: using Gaussian elimination we can determine if
all constraints can be satisfied in polynomial time by solving the system of linear equations when viewing the
problem under the original “integers mod 2” perspective. So, any hardness reduction must have imperfect
completeness. Given this, Theorem 1 is essentially the best possible because a random assignment satisfies half
of the total weight of the constraints in expectation.

32.1.1 Preliminaries

Definition 2 A boolean function f : {−1,+1}n → {−1,+1} is folded if f(−z) = −f(z) for each z ∈ {−1,+1}n.

Note that a folded boolean function f on n bits can be completely described using a 2n−1 bit string in the
following way. Say the bit string records the value of f(z) explicitly for all z ∈ {−1,+1}n that have z1 = 1.

32-1

32-2 Lecture 32: H̊astad’s Max-2Lin(3) Hardness

Then we can compute any f(z) value by querying this bit string once, either with z if z1 = 1 or by computing
−f(−z) with one query to the bit string if z1 = −1.

Call this string the compact representation of the folded function f .

32.1.2 The Reduction

For an appropriate constant δ > 0 that we will describe later, we first reduce an instance x of the decision
problem x ∈ L? to Set Cover with soundness δ · |E| (so use ` = log2 1/δ). This gives us a regular graph
G = (V ;E) with sides VL, VR, a set of labels Σ, and constraints πe, e ∈ E. Since δ will be chosen to be a
constant, then the reduction takes polynomial time and Σ has constant size.

There are |V | · 2|Σ|−1 variables in the Max-2Lin(3) instance we construct which will be viewed in the following
way. For each w ∈ V , there are 2|Σ|−1 variables that we interpret as the compact representation of a folded
function fw : {−1,+1}Σ → {−1,+1}. In this way, a setting of particular {−1,+1} values to the variables gives
us one folded function for each w ∈ V .

Now for the constraints. For two different y, z ∈ {−1,+1}n we let y · z ∈ {−1,+1}n be the bit string whose
i’th coordinate is yi · zi. Also, for a constraint πe and some y ∈ {−1,+1}Σ we let π−1

e (y) ∈ {−1,+1} be the bit
string where entry s is yπe(s). In other words, π−1

e (y) is simply the unique bit string y′ such that y′π(s) = ys for

each s ∈ Σ. It is helpful to think of π−1
e (y) as the preimage bit string of y. See Figure 32.1 for an illustration.

u v
⇡e -1

+1

-1

-1

+1

-1

+1

-1

-1

-1

+1

+1

+1
-1

y}}⇡�1
e (y)

Figure 32.1: Illustration of the construction of π−1
e (y) for an edge e = (u, v). The small nodes on each side

represent labels in Σ and the arrows between them represent the mapping πe. A specific y ∈ {−1,+1}Σ is given
on the right, and the bits of π−1

e (y) on the left are simply the corresponding bits of y when following the πe
mapping.

Algorithm 1 describes the reduction in a somewhat unusual manner. Really, it simply samples a single constraint
according to a particular distribution. In the real reduction, a constraint C is included with weight wC equal
to the probability that C is sampled by Algorithm 1. It is a simple exercise to see this can be computed in
polynomial time (recalling that |Σ| is a constant).

In this algorithm, we call z an ε-noise vector because multiplying any w by z is the same as flipping each entry
of w with probability ε. So, in particular, the term x · z in the last line can be viewed as a “noisy” version of x.

Again, for emphasis, recall that the functions fu, fv in the last step correspond to folded functions that are

Lecture 32: H̊astad’s Max-2Lin(3) Hardness 32-3

Algorithm 1 Sampling a single constraint.

Sample an edge e = (u, v) ∈ E uniformly at random.
Sample x,y ∈ {−1,+1}Σ independently and uniformly at random.
Sample z ∈ {−1,+1}Σ by setting zi = +1 with probability 1− ε and zi = −1 with probability ε.
output the constraint fu(x) · fv(y) · fu(x · z · π−1

e (y))

described by the 2|Σ|−1 variables associated with u, v. What this really means for fu (and similarly for fv) is
that for x ∈ {−1,+1}Σ with x1 = 1 the term fu(x) really means the variable corresponding to position x in
the compact representation and if x1 = −1 then fu(x) really means the negation of the variable corresponding
to position −x of the compact representation. In the latter case, we multiply both sides of the constraint by
-1 to ensure the sampled constraint is of the form vi · vj · vk = b for some b ∈ {−1,+1} where vi, vj , vk are the
appropriate variables in the corresponding compact representations.

From now on, we ignore this low level detail and simply proceed by interpreting a variable assignment as
describing folded functions {fw}w∈V .

32.1.3 Completeness

Assume x ∈ L and let σ : V → Σ be a labelling that satisfies all constraints of the Label Cover instance.

A good solution for the Max-2Lin(3) instance is obtained by setting each boolean function fw : {−1,+1}Σ →
{−1,+1} to simply the function fw(z) = zσ(w). This is called a dictator function because the function depends
only one one coordinate. Note that a dictator function is folded.

Claim 1 The weight of satisfied constraints is at least 1− ε.

Proof. We simply show that with probability 1 − ε, Algorithm 1 will output a constraint that is satisfied by
this assignment.

Algorithm 1 samples zσ(u) = 1 with probability 1 − ε. When this happens, the output constraint is satisfied
because

fu(x) · fv(y) · fu(x · z · π−1
e (y)) = xσ(u) · yσ(v) · xσ(u) · zσ(u) · (π−1

e (y))σ(u)

= yσ(v) · (π−1
e (y))σ(u)

= yσ(v) · yπe(σ(u))

= yσ(v) · yσ(v)

= 1

The second last inequality is because πe is satisfied by σ.

32.1.4 Soundness

Assume x 6∈ L, so that any labelling σ for G satisfies at most δ · |E| edge constraints πe. We will show
that for an appropriately small constant δ that any solution to the Max-2Lin(3) instance satisfies at most a(

1
2 + ε

)
-fraction of the total constraint weight.

In some sense we want to prove a weak converse of what we saw in the completeness case. For an edge e = (u, v),
if a large total weight of the constraints of the Max-2Lin(3) instance associated with e were satisfied then we

32-4 Lecture 32: H̊astad’s Max-2Lin(3) Hardness

hope that fu, fv should resemble dictator functions whose corresponding labels satisfy πe. If so, then we can
conclude that there are not many such edges e by the soundness of the Label Cover instance.

However, without the “ε-noise” z this is not true as many of the folded functions χS , S ⊆ [n] could also be used
for fu, fv to have satisfy all of e’s associated constraints (for example, using fu = χS , fv = χT where for each
t ∈ T , πe(s) = t for exactly one s ∈ S). We will see that, in some sense, the noise z punishes the non-dictator
functions so which eliminates cheating solutions of this kind.

Also, if we did not require the functions to be folded then we could simply set each fw to be the constant
boolean function that always takes the value 1, which would satisfy every constraint. The soundness analysis
will critically rely on the fact that the functions are folded and the ε-noise z is added when sampling a constraint
in Algorithm 1.

From now on, suppose {fw}w∈V are the folded functions corresponding to a particular assignment of {−1,+1}-
values to the variables.

Definition 3 Say an edge e ∈ E is good if

Pr[Algorithm 1 outputs a satisfied constraint |Algorithm 1 samples e] ≥ 1

2
+
ε

2
.

Let gE be the probability of sampling a good edge in the first step of Algorithm 1 (i.e. gE is the fraction of good
edges).

Similar to the Set Cover reduction, we will show that there cannot be too many good edges, thus there cannot
be too many satisfied constraints.

Lemma 1 For an appropriate choice of constant δ, gE ≤ ε/2.

We will prove this soon, but let us see how to conclude the soundness analysis under this assumption.

The weight of satisfied constraint is precisely the probability that Algorithm 1 outputs a constraint that is
satisfied by the given solution {fw}w∈V . Consider the following two indicator random variables (over the
random choices made by Algorithm 1). Let XE ∈ {0, 1} be 1 if and only if the sampled edge e is good and let
YC ∈ {0, 1} be 1 if and only if the constraint that is output is satisfied by {fw}w∈V .

(Total weight of constraints satisfied by {fw}w∈V) = Pr[YC]

= Pr[YC |Xe] · Pr[Xe] + Pr[YC |¬Xe] · Pr[¬Xe]

≤ 1 · gE +

(
1

2
+
ε

2

)
· (1− gE)

≤ ε

2
+

(
1

2
+
ε

2

)
=

1

2
+ ε

All that is left is to prove Lemma 1. To do this, we need to introduce a new analysis tool.

32.1.5 Interlude: A Very Brief Introduction to Fourier Analysis

The soundness analysis is following the same basic idea behind the Set Cover soundness analysis we saw
earlier. We identified good edges as those that contribute a lot to the weight of satisfied constraints. We will
show that a certain random labelling σ : V → Σ will satisfy good edges with constant probability. Thus, there
cannot be many good edges because the soundness in the Label Cover reduction is small.

Lecture 32: H̊astad’s Max-2Lin(3) Hardness 32-5

Showing that a good edge satisfies an edge constraint with constant probability (and even defining the random
labelling σ) requires very cool machinery that we have not seen yet: Fourier analysis of boolean functions.

Unfortunately, we do not have time to explore the many fascinating applications of this tool in hardness proofs.
At least we will see one here. We will only cover the very basics, consult the in-depth book by Ryan O’Donnell
if you want to learn more [O14] (you can download the .pdf from the book’s webpage).

Boolean functions in vector spaces
View the set of functions f : {−1,+1}n → R as a 2n-dimensional R-vector space where (f +g)(x) = f(x)+g(x)
and (α · f)(x) = α · f(x) for α ∈ R. In particular, the boolean functions {−1,+1}n → {−1,+1} are members
of this vector space.

Consider the following inner product for this space. For functions f, g : {−1,+1}n → R we define

〈f, g〉 = Ex[f(x) · g(x)].

In this definition, x is sampled uniformly at random from {−1,+1}n. It can be easily verified that 〈·, ·〉 satisfies
the properties of an inner product over this vector space.

A very nice basis
Let [n] = {1, . . . , n}. We identify a special basis of this vector space called the Fourier basis. For any S ⊆ [n]
consider the boolean function χS : {−1,+1}n → {−1,+1} given by χS(x) =

∏
i∈S xi. To be clear, χ∅ is the

constant boolean function that always takes the value 1.

Lemma 2 The functions {χS}S⊆[n] form an orthonormal basis for the space of {−1,+1}n → R functions with
respect to this inner product 〈·, ·〉.

Proof. We have 1 = f(x)2 for any x and any boolean function f , so 〈f, f〉 = 1. In particular, it holds for the
χS functions.

Now consider different S, T ⊆ {1, . . . , n} and say i ∈ S − T (if S ⊆ T then simply swap the roles of T and S in
this proof). We have χS(x) = χT (x) for exactly half of the inputs x ∈ {−1,+1}n because if x′ is obtained by
negating only the i’th bit of x then χS(x) 6= χS(x′) while χT (x) = χT (x′). Thus, Ex[χS(x) · χT (x)] = 0.

This shows {χS}S⊆[n] is an orthonormal collection. There are exactly 2n of them (one for each S ⊆ [n]) and
the vector space has dimension 2n, so they in fact form a basis for this space.

Fourier coefficients
By Lemma 2, every function f : {−1,+1} → R can be uniquely decomposed as a linear combination of the

functions {χS}S⊆[n]. That is, we can write f =
∑
S⊆[n] f̂(S) · χS where each f̂(S) ∈ R. These f̂(S) values are

the Fourier coefficients of f .

Example 1 Let f : {−1,+1}2 → {−1,+1} be the AND function, so f(x1, x2) = max{x1, x2}. It is easy to
verify that

f =
χ∅
2

+
χ{1}

2
+
χ{2}

2
− χ{1,2}

2
,

so f̂(S) = 1
2 for S 6= {1, 2} and f̂({1, 2}) = − 1

2 .

32-6 Lecture 32: H̊astad’s Max-2Lin(3) Hardness

Lemma 3 For any f, g : {−1,+1}n → R we have 〈f, g〉 =
∑
S⊆[n] f̂(S) · ĝ(S).

Proof.

〈f, g〉 = Ex[f(x) · g(x)]

= Ex

∑
S⊆[n]

f̂(S) · χS(x)

 ·
 ∑
T⊆[n]

ĝ(T) · χT (x)


=

∑
S,T⊆[n]

f̂(S) · ĝ(T) · Ex[χS(x) · χT (x)]

=
∑

S,T⊆[n]

f̂(S) · ĝ(T) · 〈χS , χT 〉

=
∑
S⊆[n]

f̂(S) · ĝ(S)

The last equality uses the fact that the Fourier basis is orthonormal.

Finally, there is a convenient way to compute Fourier coefficients of a function.

Lemma 4 For any f : {−1,+1}n → R and any S ⊆ [n], we have 〈f, χS〉 = f̂(S). In particular, we have

Ex[f(x] = f̂(∅).

Proof.

〈f, χS〉 =

〈∑
R⊆[n

f̂(R) · χR, χS
〉

=
∑
R⊆[n]

f̂(R) · 〈χR, χS〉 = f̂(S)

In particular, Ex[f(x)] = 〈f, χ∅〉 = f̂(∅).

The Fourier distribution of a boolean function
Let f : {−1,+1}n → {−1,+1} be a boolean function. By Lemma 3 and the fact f(x)2 = 1 for each x ∈
{−1,+1}n we have 1 =

∑
S⊆[n] f̂(S)2. This, plus the obvious fact that f̂(S)2 ≥ 0 for each S ⊆ [n], suggests a

probability distribution over subsets of [n].

Definition 4 The Fourier distribution of f over subsets of [n] is the distribution that places weight f̂(S)2 on
S ⊆ [n].

32.1.6 There Are Few Good Edges

We focus on proving Lemma 1. To do this, we randomly construct a labelling σ : V → Σ such that every good
edge e has πe satisfied with constant probability.

The way to sample σ is elegant. For each w ∈ V , we set σ(w) ∈ Σ by first sampling some S ⊆ [n] from the

Fourier distribution of fw (i.e. S is chosen with probability f̂w(S)2). By Lemma 4 and the fact that fw is folded,

f̂w(∅) = 0 so S 6= ∅. We then select σ(w) to be a uniformly chosen random element of S.

Our main technical lemma is the following.

Lecture 32: H̊astad’s Max-2Lin(3) Hardness 32-7

Lemma 5 If e is good, then over this random construction of σ we have Pr[σ satisfies πe] ≥ ε3.

If so, then we conclude by noting

ε3 · gE ≤ E[fraction of πe satisfied by σ] ≤ δ.

so gE ≤ δ/ε3. If we choose δ = ε4/2 then we have gE ≤ ε/2, as desired.

Proof of Lemma 5. Let e be a good edge. For any T ⊆ [n], let α1(T) = {s ∈ Σ : πe(s
′) = s for some s′ ∈ T}.

So, for any s ∈ α1(T) if we choose s′ ∈ T uniformly at random then Pr[πe(s
′) = s] ≥ 1

|T | . Therefore,

Pr[σ satisfies πe] ≥
∑
T⊆[n]

S⊆α1(T)

f̂u(T)2 · f̂v(S)2 · 1

|T | (32.1)

We will lower bound this expression by ε3.

Now we employ a useful trick: arithmetizing the probability that a Algorithm 1 outputs a constraint that is
satisfied by fu, fv, given that it samples e. The function in the first expected value statement below is 0 if
the sampled constraint is not satisfied and is 1 if the constraint is satisfied. This, plus the fact that e is good,
justifies the first inequality.

1

2
+
ε

2
≤ Ex,y,z

[
1 + fu(x) · fv(y) · fu(x · z · π−1

e (y))

2

]

=
1

2
+

1

2
· Ex,y,z

 ∑
R⊆[n]

f̂u(R) · χR(x)

 ·
∑
S⊆[n]

f̂v(S) · χS(y)

 ·
 ∑
T⊆[n]

f̂u(T) · χT (x · z · π−1
e (y))


=

1

2
+

1

2
·

∑
R,S,T⊆[n]

f̂u(R) · f̂v(S) · f̂u(T) · Ex,y,z[χR(x) · χS(y) · χT (x · z · π−1(y))]

=
1

2
+

1

2
·

∑
R,S,T⊆[n]

f̂u(R) · f̂v(S) · f̂u(T) · Ex[χR(x) · χT (x)] · Ey[χS(y) · χT (π−1
e (y))] · Ez[χT (z)]

Simply expand each fu and fv in terms of their Fourier coefficients to get the first equality. The last equality
is justified because the values x,y, z are sampled independently and because χS(x · y) = χS(x) · χS(y) for any
S,x,y simply by definition of χS .

We can perform some quick simplifications. First, because x is sampled uniformly from {−1,+1}n we have

Ex[χR(x) · χT (x)] = 〈χR, χT 〉

which, by Lemma 2, is 1 if R = T and 0 if R 6= T . This simplifies the last expression to

1

2
+

1

2
·
∑

S,T⊆[n]

f̂u(T)2 · f̂v(S) · Ey[χS(y) · χT (π−1
e (y))] · Ez[χT (z)].

Next, because the bits of z are set independently to 1 with probability 1− ε and to -1 with probability ε, then
we have Ez[χT (z)] =

∏
s∈T E[zi] = (1− 2ε)|T | so we further simplify this expression to

1

2
+

1

2
·
∑

S,T⊆[n]

f̂u(T)2 · f̂v(S) · (1− 2ε)|T | · Ey[χS(y) · χT (π−1
e (y))].

32-8 Lecture 32: H̊astad’s Max-2Lin(3) Hardness

In other words, we have shown

ε ≤
∑

S,T⊆[n]

f̂u(T)2 · f̂v(S) · (1− 2ε)|T | · Ey[χS(y) · χT (π−1
e (y))] (32.2)

Now we consider the term Ey[χS(y) · χT (π−1
e (y))]. We claim for each S that this is 1 for precisely one T and

is 0 for the other T , but which T?

Consider some s ∈ Σ. The bit ys appears some number of times in the product

χS(y) · χT (π−1
e (y) =

∏
a∈S

ya ·
∏
a∈T

yπe(a).

Let Q be the labels s ∈ Σ such that ys appears an odd number of times in the last expression. Then because
y2
s = 1 for each s ∈ Σ we have

Ey[χS(y) · χT (π−1
e (y))] = Ey

∏
s∈Q

ys

 =
∏
s∈Q

E[ys]

which is 1 if Q = ∅ and 0 if Q 6= ∅.
For each T ⊆ [n], consider the set α2(T) := {s ∈ Σ : πe(s

′) = s for an odd number of s ∈ T}. See Figure 32.2
for an illustration of α2(T).

Important Note: α2(T) ⊆ α1(T) because for each s ∈ α2(T) there are an odd number of s′ ∈ T such that
πe(s

′) = s. In particular, there is at least one such s′ ∈ T for each s ∈ α2(T).

u v
⇡e

T ↵2(T)

Figure 32.2: Illustration of α2(T). The solid nodes on the left are the members of T and the solid nodes on the
right are members of α2(T). Each s ∈ α2(T) has an odd number of preimages (under πe) that lie in T .

From the above discussion, we see that Ey[χS(y) · χT (π−1
e (y))] = 1 if S = α2(T), otherwise it is 0. So, (32.2)

further simplifies to

ε ≤
∑
T

f̂u(T)2 · f̂v(α2(T)) · (1− 2ε)|T | ≤
∑
T

f̂u(T)2 · |f̂v(α2(T))| · 1√
ε · |T |

(32.3)

Lecture 32: H̊astad’s Max-2Lin(3) Hardness 32-9

The last bound is justified by recalling 1− x ≤ e−x for all x ≥ 0 and the easy-to-prove bound
√
y · e−2y ≤ 1.

Rearranging (32.3), we have

ε3/2 ≤
∑
T

f̂u(T)2 · |f̂v(α2(T))| · 1√
|T |
≤
(∑

T

f̂u(T)2

)1/2

·
(∑

T

f̂u(T)2 · f̂v(α2(T)))2 · 1

|T |

)1/2

(32.4)

where the last step uses the Cauchy-Schwarz inequality (Theorem 2, proven below).

The first sum on the right-hand side is just 1 by Lemma 3. Squaring both sides shows

ε3 ≤
∑
T

f̂u(T)2 · f̂v(α2(T)))2 · 1

|T | .

Because α2(T) ⊆ α1(T), then by (32.1) we finally see ε3 ≤ Pr[σ satisfies πe].

32.1.7 The Cauchy-Schwarz Inequality

Theorem 2 Let a,b ∈ Rn and let a ◦ b denote the usual dot product and ||a|| = √a ◦ a the standard norm of
a vector. Then |a ◦ b| ≤ ||a|| · ||b||.

Proof. This is trivial if b = 0, so assume otherwise. For any t ∈ Rn we have

0 ≤ (a− t · b) ◦ (a− t · b) = t2 · (b ◦ b)− 2 · t · (a ◦ b) + (a ◦ a).

Select t to minimize the quadratic, rearrange the inequality, and take square roots.

This bound was applied in (32.4) by considering aT = f̂u(T) and bT = f̂u(T) · |f̂v(T)| · 1√
|T |

.

32.1.8 Summary

The number of variables is |V | · 2|Σ|−1. Since |Σ| = c` for some constant c, since ` = log2
1
δ with δ = ε4/2, and

since |V | = |x|O(`), then the number of variables is polynomial in |x|. Also, it is easy to see how to generate all
constraints and their weights in |x|O(`) time as well. So, the running time and size of the resulting instance is

|x|O(log ε−1).

There is one technicality we have to address. The reduction is to Max-2Lin(3) but some of the constraints
that are output in Algorithm 1 may depend on less than three different variables. This happens precisely when
x = ±x · z · π−1

e (y) (which causes the same two bits of the compact representation of the folded function fu to
be included in the constraint) or, equivalently, when z = ±π−1

e (y).

This happens with very low probability: one way to see this is to dig into the Label Cover reduction a bit
to see that the mappings πe : Σ→ Σ are at most b`-to-1 for some constant b < c (here, c` = |Σ|). For example,
the reductions to Label Cover in both the Williamson and Shmoys and the Vazirani text have this property.

Then for every z the probability that π−1
e (y) = ±z for the random choice of y is at most 2 · 2−(c/b)` . For the

same choice of `, this is very small. Certainly less than ε/2.

So, if we remove the constraints output by Algorithm 1 that involve less than three different variables and

renormalize the weights, the completeness is at least 1− 3
2 · ε and the soundness is 1/2+ε

1−ε/2 ≤ 1
2 + 3 · ε. To get the

32-10 Lecture 32: H̊astad’s Max-2Lin(3) Hardness

1− ε vs. 1/2 + ε hardness gap, we just have to scale ε by 1
3 before running the reduction and removing the bad

constraints.

32.2 Discussion

In an earlier lecture, we used Theorem 1 to establish a 1− ε vs. 7/8 + ε hardness gap for Max-3SAT. H̊astad
also gives a more direct reduction from Label Cover that is in the same spirit as Algorithm 1 but tailored
for Max-3SAT and establishes a hardness gap of 1 vs. 7/8 + ε [H99]. That is, if x ∈ L then the resulting
Max-3SAT instance is satisfiable.

Tools from the analysis of boolean functions and, in particular, Fourier analysis are indispensable in proving
excellent (and often tight) hardness of approximation bounds for constraint satisfaction problems. We cannot
survey the many important applications here. The interested reader is encouraged to consult O’Donnell’s
book [O14] on the topic to learn more of the foundations of boolean function analysis.

A great follow-up for learning more about these techniques is the Unique-Games hardness of approximating
undirected Max Cut better than the constant minθ∈[0,π]

2
π · θ

1−cos θ ≈ 0.878. The original paper by Khot et al.
is a good place to start [KKMO07]. I also found the lecture notes from a course taught by Harsha to be quite
helpful [H10].

References

H99 J. H̊astad, Some optimal inapproximability results, Journal of the ACM, 48(4):798–859, 2001.

KKMO07 S. Khot, G. Kindler, E. Mossel, R. O’Donnell, Optimal inapproximability results for MAX-CUT and other
2-variable CSPs?, SIAM Journal on Computing, 37(1):319–357, 2007.

H10 P. Harsha, Unique-Games Hardness of MAXCUT, lecture notes, 2010
http://www.tcs.tifr.res.in/~prahladh/teaching/2009-10/limits/lectures/lec12.pdf

O14 R. O’Donnell, Analysis of Boolean Functions, Cambridge University Press, 2014.
http://analysisofbooleanfunctions.org/

http://www.tcs.tifr.res.in/~prahladh/teaching/2009-10/limits/lectures/lec12.pdf
http://analysisofbooleanfunctions.org/

	Hardness of Max-2Lin(3)
	Preliminaries
	The Reduction
	Completeness
	Soundness
	Interlude: A Very Brief Introduction to Fourier Analysis
	There Are Few Good Edges
	The Cauchy-Schwarz Inequality
	Summary

	Discussion

