
CMPUT 675 - Assignment #3

Fall 2014, University of Alberta
Due October 29 in class.

Pages: 4

This assignment is to be completed individually. I understand that you may want to discuss
the assignment with other students, a good guide for understanding my expectations is that you
should not take notes or work out precise details in your discussions (keep it high-level). Mention
any discussions and cite any resources you used on the writeup you hand in.

To be clear, whenever you are asked to give an approximation algorithm for a problem, it is expected
that you will both describe the algorithm and prove the claimed approximation guarantee. If you
can only think of an algorithm with a worse approximation guarantee than I am asking for, then
describe it anyway. You may get partial marks (though, it cannot be entirely trivial).

Problem 1)
Marks: 5

Consider the Max Dicut problem. We are given a directed graph G = (V,E) with edge weights
w(u, v) ≥ 0, (u, v) ∈ E. The goal is to find a cut S ⊆ V that maximizes the total weight of edges
in δout(S) = {(u, v) ∈ E : u ∈ S, v 6∈ S}.

• Warmup: Suppose we form S by placing each v ∈ S with probability 1/2. Show that the
expected weight of all edges in δ(S) is exactly

∑
(u,v)∈E w(u, v)/4. [1 mark]

• Now consider the following LP-based approximation. For each directed edge (u, v) ∈ E we
have a variable xu,v and for each vertex v ∈ V we have a variable yv. The relaxation is the
following:

maximize :
∑

(u,v)∈E

w(u, v) · xu,v

subject to : xu,v ≤ yu for each (u, v) ∈ E
xu,v ≤ 1− yv for each (u, v) ∈ E

xu,v, yv ∈ [0, 1] for each (u, v) ∈ E and v ∈ V

(LP-Q1)

Argue that the optimum solution to (LP-Q1) is an upper bound on the optimum solution to
the Max Dicut problem. [1 mark]

• Let x∗,y∗ be an optimum solution to (LP-Q1). Suppose we form S by placing each v ∈ V
in S with probability 1/4 + y∗v/2. Show Pr[(u, v) ∈ δout(S)] ≥ x∗u,v/2 for each (u, v) ∈ E.
Conclude that this is a 1/2-approximation. [2 marks]

• Show that this analysis is tight: for any c > 1/2 there is an instance of Max Dicut such
that the relaxation (LP-Q1) for this instance has integrality gap ≤ c. [1 mark]
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Problem 2)
Marks: 2

A star is a tree where all but one vertex is a leaf. Show that if there is an α-approximation for the
Multicut problem in stars then there is an α-approximation for the Minimum Vertex Cover
problem in general graphs. [2 marks]

Problem 3)
Marks: 4

Recall the LP relaxation for Minimum Weight Vertex Cover we saw in class. Let G = (V,E)
be an undirected graph with vertex weights w(v), v ∈ V .

minimize :
∑
v∈V

w(v) · xv

subject to : xu + xv ≥ 1 for each (u, v) ∈ E
xv ∈ [0, 1] for each v ∈ V

(LP-Q3)

Let OPTLP denote the optimum solution value to this LP for a given instance.

1. Prove that any extreme point solution x̄ is half integral: x̄v ∈ {0, 1/2, 1} for each v ∈ V .
Hint: Show that if x̄ is not half integral, then it can be expressed as a convex combination of
two other LP solutions x′,x′′ where for every v with x̄v ∈ {0, 1/2, 1} we have x̄v = x̄′v = x̄′′v .
[2 marks]

2. Show that if G can be coloured with χ colours, then the integrality gap is in fact at most
2 − 2/χ. Furthermore, show that if we are given an colouring of G with χ colours then we
can find a vertex cover with total weight at most 2− 2/χ times the optimum solution value
of (LP-Q3). [1 marks]

3. The previous part of this problem shows that the integrality gap of (LP-Q3) is at most 4/3
when G is 3-colourable. Suppose we have a polynomial time algorithm A that finds a vertex
cover of size at most 4/3 times the optimum value of (LP-Q3) for any instance of Minimum
Vertex Cover (without vertex weights) where the graph G is 3-colourable, even if we do
not know the colouring of G.

Show that if we are given a graph G that we are told is 3-colourable without being given the
colouring, then we can use A to efficiently colour G with O(log |V |) colours. [1 mark]



Problem 4)
Marks: 3

Consider the Facility Location With Penalties problem. We have a set of client locations C
and facility locations Fwith metric costs c(i, j) between locations. Additionally, for each i ∈ F we
have an opening cost fi ≥ 0 and for each j ∈ C we have a penalty πj ≥ 0. We must open some
facilities and assign some clients to these open facilities while minimizing the overall cost. Here,
the cost of a solution is the total facility opening cost, the total client assignment cost, and the
total penalty for clients that are not assigned to any facility.

Now consider the following LP relaxation for the problem, where xi,j = 1 indicates j ∈ C gets
assigned to i ∈ F , yi = 1 indicates we open facility i ∈ F , and zj = 1 indicates that we are choosing
to not assign client j to any open facility.

minimize :
∑
i∈F

fi · yi +
∑

i∈F,j∈C
c(i, j) · xi,j +

∑
j∈C

πj · zj

subject to :
∑
i∈F

xi,j + zj = 1 for each j ∈ C

yi − xi,j ≥ 0 for each i ∈ F and each j ∈ C
x,y, z ≥ 0

(LP-Q4)

• Write the dual (LP-Q4). [1 mark]

• Let x∗,y∗, z∗ denote an optimal solution to (LP-Q4) with cost OPTLP. Show∑
j∈C:z∗j>0

πj ≤ OPTLP.

Conclude the the integrality gap of this LP relaxation is at most α + 1 where α denotes
an upper bound on the integrality gap of the Uncapacitated Facility Location LP
relaxation from class. [2 marks]



Problem 5)
Marks: 2

Recall the Constrained Forest problem we saw in class (the generalization of Steiner Forest).
We have an undirected graph G = (V,E) with edge costs ce ≥ 0, e ∈ E. Furthermore, we also have
a cut requirement function f : 2V → {0, 1}. Here, f is not explicitly given in the input; instead we
have an efficient algorithm that takes a subset S ⊆ V and outputs f(S).

A subset F ⊆ E is said to be feasible δ(S) ∩ F 6= ∅ for every S ⊆ V with f(S) = 1. The goal is to
find the cheapest feasible subset of edges. We saw that if f is a proper function then the integrality
gap of a natural LP relaxation is at most 2.

Suppose instead that f is a downward monotone function:

• f(∅) = f(V ) = 0

• f(S) ≥ f(T ) for every ∅ ( S ⊆ T

For example, the function f where f(S) = 1 if and only if 1 ≤ |S| ≤ k − 1 for some integer k is
downward monotone. This models the problem of finding the cheapest subset of edges F so that
every component in (V, F ) has at least k vertices.

We can approximate the Constrained Forest problem with a downward monotone cut require-
ment function in basically the same way as we approximated it for proper functions. Here, you are
asked to provide the only significantly different detail.

——————————————————————————————————————————–

Your Job
Suppose F is a feasible set of edges (i.e. δ(S) ∩ F 6= ∅ for any S ⊆ V with f(S) = 1) such that
F − {e} is not feasible for any e ∈ F (i.e. F is a minimial feasible set). Call a vertex v ∈ V active
if f({v}) = 1 and inactive if f({v}) = 0.

Show that in every connected component C of the graph H = (V, F ) there is at most one inactive
vertex. Conclude that the average degree of the active vertices in H is at most 2. For partial marks,
simply show this claim in the restricted setting where each v ∈ V has some reward r(v) ≥ 0 and
f(S) = 1 if and only if

∑
v∈S r(v) < k for some value k. [2 marks]

——————————————————————————————————————————–

Note: This essentially shows the integrality gap of the LP relaxation we used for the Constrained
Forest problem is at most 2 when f is a proper function. The graph H above corresponds to
the graph of contracted components in a particular dual growing iteration (so V here is really a
collection of contracted sets of vertices in the original graph). The only other details that need to
be modified from the proof for proper functions are very minor.


