
CMPUT 675 - Assignment #1

Fall 2014, University of Alberta
Due September 24 in class.

Pages: 3

This assignment is to be completed individually. I understand that you may want to discuss
the assignment with other students, a good guide for understanding my expectations is that you
should not take notes or work out precise details in your discussions (keep it high-level). Mention
any discussions and cite any resources you used on the writeup you hand in.

To be clear, whenever you are asked to give an approximation algorithm for a problem, it is expected
that you will both describe the algorithm and prove the claimed approximation guarantee. If you
can only think of an algorithm with a worse approximation guarantee than I am asking for, then
describe it anyway. You may get partial marks (though, it cannot be entirely trivial).

Problem 1)
Marks: 2

In the Maximum Acyclic Subgraph problem, we are given a directed graph G = (V,E). The
goal is to find the largest subset F of E such that the graph H = (V, F ) contains no directed cycles.
Show that there is always a solution F with size at least |E|/2 and that such a set can be found in
polynomial time. Conclude that this is a 1

2 -approximation.

Problem 2)
Marks: 3

Show that for every c < 3
2 there is an instance of the Traveling Salesman problem such that

Christofides’ algorithm will find a solution whose cost is at least c times the optimum solution cost.
This shows the analysis we saw in class cannot be improved.

Hint:

1



Problem 3)
Marks: 3

Let G = (V,E) be a graph. A clique is a subset of nodes C ⊆ V such that (u, v) ∈ E for every two
distinct u, v ∈ C. In the Maximum Clique problem, the goal is to find the largest clique C in a
given graph.

Show that if there is an α-approximation for the Maximum Clique problem for some constant
α < 1, then there is also a

√
α-approximation.

Hint: consider the graph G2 = (V × V,E′) where ((u, v), (w, x)) ∈ E′ for distinct (u, v), (w, x) ∈
V × V if and only if both of the following conditions hold:

• (u,w) ∈ E or u = w

• (v, x) ∈ E or v = x.

Side Note: Iterating this argument shows that if there is some constant-factor approximation
than there is, in fact, a (1− ε)-approximation for any constant ε > 0. Later in the course, we will
see there is, in fact, some constant c < 1 such that there is no c-approximation for the Maximum
Independent Set problem unless P = NP. Considering this lower bound in light of this exercise,
we see there is in fact no constant-factor approximation unless P = NP.

Problem 4)
Marks: 4

Consider the the k-Suppliers problem, a variant of the k-Center problem we discussed in class.

As input, we are given a metric on nodes V with distances d(u, v), u, v ∈ V , a partition of V into
two nonempty sets F,C, and an integer k ≥ 1. We call F the suppliers and C the clients.

The goal is to find a subset A ⊆ F with |A| ≤ k to minimize the maximum distance travelled by a
client to their nearest supplier in A. That is, A should minimize max

j∈C
min
i∈A

d(i, j).

• Give a 3-approximation for the k-Suppliers problem. [3 marks]

• Show that there is no c-approximation for the k-Suppliers problem for any c < 3 unless P
= NP. [1 marks]

Answer any one of the following two problems. You may attempt both, in which case I will
use the highest mark for your grade.

Problem 5)
Marks: 4

Option 1
Consider the Asymmetric Traveling Salesman problem. The setting is much like classic TSP
with the only difference being that the distances are not required to satisfy the symmetry property.
That is, we are given a set of locations V and nonnegative costs c(u, v) between u, v ∈ V that



satisfy c(v, v) = 0 for v ∈ V and c(u, v) ≤ c(u,w) + c(w, v) for u, v, w ∈ V . However, we may
have c(u, v) 6= c(v, u) for locations u, v ∈ V . For example, such distances arise naturally in road
networks with one-way streets.

• A cycle cover of a subset U ⊆ V is a collection of directed cycles C such that each v ∈ U lies
on exactly one cycle in C and each w ∈ V − U does not lie on any cycle. We allow directed
cycles of length two. The cost of C is the total cost of all edges used by the cycles C.

Describe how to find a minimum-cost cycle cover for any U ⊆ V with |U | ≥ 2 in polynomial
time. [1 mark]

• Give a log2 n-approximation for the Asymmetric Travleing Salesman problem. [3 marks]

You may use the following fact without proof. If a directed graph is weakly connected (i.e.
the undirected graph obtained by ignoring directions is connected) and for every vertex v the
number of edges directed in to v equals the number of edges directed out of v, then there is a
tour of the graph that crosses each directed edge exactly once (and in the proper direction).

Option 2
The Traveling Salesman Path problem is similar to classic TSP. We are given a (symmetric)
metric on locations V with costs c(u, v) between any two u, v ∈ V . Additionally, we are given two
distinct nodes s, t ∈ V . The goal is the find the cheapest Hamiltonian path that starts at s and
ends at t.

• Let T = (V,E) be a tree and let D ⊆ V be a set of nodes with |D| even. Show that we can
efficiently pair the nodes of D into |D|/2 pairs (v1, v2), (v3, v4), . . . , (v|D|−1, v|D|) so that if we
let Pi denote the path between the i’th pair, 1 ≤ i ≤ |D|/2, then no edge of T lies on more
than one of these Pi paths. [1 mark]

• For any spanning tree T of the input where both s and t are leaves of T , let D be the set of
nodes in V − {s, t} that have odd degree in T . Also, let P be any Hamiltonian s − t path.
Finally, let T + P denote the multiset of edges lying on either T or P , where we keep both
copies of an edge if it lies on both T and P .

Show that we can efficiently decompose T + P into three sets of edges E1, E2, E3 such that
in each graph Gi = (V,Ei), 1 ≤ i ≤ 3, the set of nodes with odd degree in Gi is precisely D.
Such a set of edges is called a D-join. [2 marks]

• Give a 5
3 -approximation for the Traveling Salesman Path problem. [1 mark]

You may use, without proof, the fact that if a graph is connected and all but two vertices
have even degree, then there is a walk between the two odd-degree nodes that uses each edge
exactly once (an Eulerian walk). Such a walk can be found in polynomial time.


